无约束优化算法分类及算法应用
前言
无约束优化问题是指在没有约束条件的情况下,寻找一个函数的最小值
(或最大值
)。以下是一些常用的算法,它们可以用来快速准确地求解无约束优化问题:
无约束优化算法
1. 梯度下降法(Gradient Descent)
梯度下降法是一种迭代优化算法,它通过沿着目标函数梯度的反方向更新参数来逐步逼近最小值。
- 优点:简单易懂,适用于大规模问题。
- 缺点:可能会陷入局部最小值,收敛速度受学习率影响较大。
2. 牛顿法(Newton’s Method)
牛顿法利用目标函数的二阶导数信息(Hessian矩阵)来加速收敛。
- 优点:收敛速度快,特别是对于二次函数。
- 缺点:计算Hessian矩阵及其逆矩阵可能很复杂,存储需求大。