无约束优化算法分类及算法应用示例(附完整MATLAB代码)

前言

无约束优化问题是指在没有约束条件的情况下,寻找一个函数的最小值(或最大值)。以下是一些常用的算法,它们可以用来快速准确地求解无约束优化问题:

无约束优化算法

1. 梯度下降法(Gradient Descent)

梯度下降法是一种迭代优化算法,它通过沿着目标函数梯度的反方向更新参数来逐步逼近最小值。

  • 优点:简单易懂,适用于大规模问题。
  • 缺点:可能会陷入局部最小值,收敛速度受学习率影响较大。

2. 牛顿法(Newton’s Method)

牛顿法利用目标函数的二阶导数信息(Hessian矩阵)来加速收敛。

  • 优点:收敛速度快,特别是对于二次函数。
  • 缺点:计算Hessian矩阵及其逆矩阵可能很复杂,存储需求大。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Albert_Lsk

今天又能喝柠檬茶啦

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值