寒假提前预习了下学期的数学课本,感觉比上学期相比难了许多,甚至就是上学期的升级。
上下学期的单元变化与基础考点分析
这是上下学期的目录。其实光从目录上看,下学期的知识就已经高了一个档次。
- 用字母表示数→简易方程(重点)
- 多边形的面积→圆(重点)
- 小数的意义和性质→分数的意义和性质(重点)
- 统计表和条形统计图(2)→折线统计图
- 负数的初步认识→因数和倍数
- 解决问题的策略(列举法)→解决问题的策略(转化思维)
- 小数加法和减法→分数加法和减法
考点分析
我通过一些期末试卷题,也大概推出了考点:
1.思维:等量代换与转化思维(重要程度80%)
这并不是考试中考的成形的知识点,但是这学期的单元全都围绕着转化思维转。也是因为有了这个分类,我把初稿里圆的讲解给删了。这个思维也同时贯穿了方程解决问题之中的最关键:找到等量关系(见第7课)。
2.分数的意义和性质(覆盖35%考点)
在看期末试卷之前,光看课本,我以为下册会像上册一样全部覆盖小数/分数,但看来是我错了。分数的乘除法,应该是因为难理解,且这学期重点多的原因,并没有添加到这学期的课本中,而是选择添加在六上的课本中。乘除法的应用是比加减法要大的多的,而在加减法的主场应用题上,也被方程抢了。
在一张满分110分的卷子中,我经过计算,发现考到分数的题目仅仅只有37分,折合成100分满分也就是说分数也只占了33.6分,这是一个很少的分,也证明了分数的地位变得低下。
3.最小公倍数与最大公因数(重要程度8%)
最小公倍数与最大公因数,给了我一番降维打击。在做这单元的单元卷的时候,甚至都想口吐芬芳,因为计算量是在太大了!(但做完这学期的卷子才知道这算小的)但是还好有一个课本中没有的万能公式:
a和b的最小公倍数=a和b的积÷a和b的最大公因数
这个公式用好了,最小公倍数的题目基本可以秒了。
在第三单元中,最小公倍数和最大公因数考的频率最高,其次是因数和倍数,质数与合数基本上是不会考的。
章尾
五年级下册的计算量,我个人认为是挺多的。无论是在分数的通分与约分上,还是在解方程、算圆周上。同时思维也由简单的列举思维变成了转化思维,可以用算式解决之前用列举法解决的问题。
往后文章的目录:
007.方程与用方程解决问题的几大步骤
008.圆的周长与面积
009.质数与合数的扩展定理
010.公因数与公倍数