- 博客(22)
- 收藏
- 关注
原创 2、Excel:基础概念、表格结构与常见函数
样例(3级汇总)目标:将第三张图片中的数据区域创建两个分组(第一张图片&第二张图片)选中第二张图中的数据区域开始功能区下的编辑组里的查找和选择下拉菜单里的定位条件,再弹出的窗口里选择:可见单元格点击Ctrl+C进行复制,在空白区域点击Ctrl+V进行粘贴。
2024-02-18 21:39:00 892
原创 高效查询方法
为了提高数据的查询速度,最常用的解决方案就是给表中变量创建索引。我们可以将索引理解成书的目录,如果一本书没有目录,那检索起来可能就比较麻烦,一旦有了目录,我们就可以根据目录进行索引,很快地找到我们需要的内容。同样的道理,如果数据表中有了索引,就可以大大提高MySQL的执行效率。
2024-02-18 21:14:44 1097
原创 SQL补充:窗口函数
窗口函数,也叫OLAP函数(Online Anallytical Processing,联机分析处理),可以对数据库数据进行实时分析处理。
2024-02-18 21:13:50 1063
原创 MySQL第七章:MySQL的基本函数
MySQL第七章:MySQL的基本函数**内容来自: **1、b站mosh老师的SQL课程(第七章) 【中字】SQL进阶教程 | 史上最易懂SQL教程!10小时零基础成长SQL大师!!_哔哩哔哩_bilibili www.bilibili.com/video/BV1UE41147KC/?3、菜鸟教程(第五版)》这部分内容得一月统一更新4、菊花酱数据分析。
2024-02-18 20:35:18 724
原创 MySQL第六章: 编写复杂查询
从表B中查询的信息与A表格的某个字段进行比较相关子查询非相关子查询FROM子句的子查询子查询的结果同样可以充当一个“虚拟表”作为FROM语句中的来源表,即将筛选查询结果作为来源再进行进一步的筛选查询。注意:只有在子查询不太复杂时进行这样的嵌套,否则最好用后面要学的的视图先把子查询结果储存储存为叫 sales_summury 的视图,然后再直接使用该视图作为来源表。案例题目:将上一节练习里的查询结果当作来源表,查询其中 total_sales 非空的记录SELECT *FROM (
2024-02-18 20:30:27 876
原创 MySQL第五章:汇总数据
解答复杂问题时,学会先分解拆分为简单的小问题或小步骤逐个击破。合理运用分解组合和IPO(input-process-output 输入-过程-输出)思想。
2024-02-18 20:28:20 835
原创 MySQL 第四章:插入、更新和删除数据
数据类型是指某个变量或值的类型,通常情况下,绝大多数的变量都属于字符型、数值型和日期时间型三种。详细来说,数值型有整数型int、浮点型float等,日期时间型有日期date、时间戳类型timestamp等。
2024-02-18 20:17:45 1059
原创 第三章在多张表格中检索数据
横纵筛选选表FROM ……横纵连接排序、限制表连接-- 创建两个简单的数据集K INT,(1,"AB"),(2,"A");K=1的记录在TA和TB两张表中都有,K=2的记录为TA表中独有,K=3的记录为TB表中独有内连接:INNER JOIN内连接就是把两张表中共有的数据提取出来文氏图FROM TA左连接:LEFT JOIN。
2024-02-18 18:07:15 1015
原创 SQL-第二章:在单一表格中检索数据
子句顺序:selectfromwhereorder bylimit:selct-纵选列,from-确定表,where-横选行(各种条件写法和组合要清楚熟悉,筛选符合条件的记录,单条记录的内容会随着纵选列而变化),order bylimit-最后再进行排序和限制。
2024-02-18 18:01:12 1102
原创 MySQL 第一章
数据库是一个以易访问格式存储的数据集合,是用来保存有组织的数据的容器(可以是一个文件【文件在数据库中被称为是表】或一组文件)。数据库:将大量数据保存起来,通过计算机加工而成的可以进行高效访问的数据集合称为数据库比如企业将用户姓名、住址、联系方式等数据保存到数据库里面,需要的时候就可以随时调用。为了管理我们的数据库 我们使用一种叫做数据库管理系统(RDBMS, Relational Database Management System,也可以叫做DBMS)的软件。
2024-02-18 17:59:37 267
原创 数据分析中需要用的的python知识(包括Numpy、Pandas、Matplotlib)
由于python的基础知识比较琐碎,这一块我打算以知识导图的形式呈现。
2024-01-29 14:27:02 321
原创 bagging:随机森林
集成学习(Ensemble learning)是机器学习中最先进、最有效、最具研究价值的领域之一,这类方法会训练多个弱评估器(base estimators),并将它们输出的结果以某种方式结合起来解决一个问题。当代工业应用中,唯一能与深度学习算法分庭抗礼的算法;数据竞赛高分榜统治者,KDDcup、Kaggle、天池、DC冠军队御用算法;在搜索、推荐、广告等众多领域,事实上的工业标准和基准模型;任何机器学习/深度学习工作者都必须掌握其原理、熟读其思想的领域。
2023-12-26 13:45:59 718 1
原创 GBDT分类树理论推导--全网最详细理论推导
参考:https://zhuanlan.zhihu.com/p/47185756https://zhuanlan.zhihu.com/p/494536555https://zhuanlan.zhihu.com/p/465921554https://zhuanlan.zhihu.com/p/91652813https://zhuanlan.zhihu.com/p/89614607GBDT用于分类的时候,并不是(像随机森林)用Gini或者熵的方式划分特征空间实现分类,由于需要拟合残差,GB
2023-12-26 13:26:07 448 1
原创 GBDT回归树理论推导--全网最详细理论推导
参考:https://zhuanlan.zhihu.com/p/47185756https://zhuanlan.zhihu.com/p/494536555https://zhuanlan.zhihu.com/p/465921554https://zhuanlan.zhihu.com/p/91652813https://zhuanlan.zhihu.com/p/89614607Boosting 思想Boosting模型可以抽象为一个前向加法模型(additive model):F(x;
2023-12-26 13:16:51 525 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人