基于姿态识别的手势识别

该博客介绍了如何利用Yolov3进行目标检测,然后对手进行姿势识别,获取手部骨骼关键点。尽管实验中发现算法鲁棒性不强,易受遮挡影响,但识别准确率高。推荐使用商汤开源的mmpose工具箱,提供了详细的运行步骤和代码链接。环境要求包括torch1.2.0,运行代码包括目标检测、重心点判断和关键点识别。此外,还给出了代码中关键部分的修改建议,如图片显示颜色和视频保存路径。
摘要由CSDN通过智能技术生成

结合yolov3对手进行目标检测,而后对手进行姿势识别,获得手部骨骼关节点。初步实验效果发现,鲁棒性不强易受遮挡影响,但识别的准确率十分可观.
直接在github上搜索商汤开源的mmpose工具箱就可以实现手势识别算法了。

运行步骤

1.目标检测
2.判断重心点
3.识别手部骨骼关键点
代码链接:
有人看我再放上github = =

所需环境

torch == 1.2.0

pip install -r requirement.txt

运行代码

run predict.py

模型文件存放:

修改绝对路径:

使用视频进行预测

在predict文件里,在如下部分修改:

cam = cv2.VideoCapture('path/vedio.mp4')

修改参数

使要显示的图片为白底图片或者原图

 for n in range(person_num):
        vis_kps = np.zeros((3, joint_num))
        vis_kps[0, :] = output_pose_2d_list[n][:, 0]
        vis_kps[1, :] = output_pose_2d_list[n][:, 1]
        vis_kps[2, :] = 1
        vis_img = vis_keypoints(vis_img, vis_kps, skeleton)  # 修改要显示的图片为原图
      # vis_img = vis_keypoints(white, vis_kps, skeleton)  # 修改要显示的图片为白底图片,

选择保存视频的目录

    vout_1.open('./output.mp4', fourcc, fps, sz, True)

效果图

在这里插入图片描述

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值