结合yolov3对手进行目标检测,而后对手进行姿势识别,获得手部骨骼关节点。初步实验效果发现,鲁棒性不强易受遮挡影响,但识别的准确率十分可观.
直接在github上搜索商汤开源的mmpose工具箱就可以实现手势识别算法了。
运行步骤
1.目标检测
2.判断重心点
3.识别手部骨骼关键点
代码链接:
有人看我再放上github = =
所需环境
torch == 1.2.0
pip install -r requirement.txt
运行代码
run predict.py
模型文件存放:
修改绝对路径:
使用视频进行预测
在predict文件里,在如下部分修改:
cam = cv2.VideoCapture('path/vedio.mp4')
修改参数
使要显示的图片为白底图片或者原图
for n in range(person_num):
vis_kps = np.zeros((3, joint_num))
vis_kps[0, :] = output_pose_2d_list[n][:, 0]
vis_kps[1, :] = output_pose_2d_list[n][:, 1]
vis_kps[2, :] = 1
vis_img = vis_keypoints(vis_img, vis_kps, skeleton) # 修改要显示的图片为原图
# vis_img = vis_keypoints(white, vis_kps, skeleton) # 修改要显示的图片为白底图片,
选择保存视频的目录
vout_1.open('./output.mp4', fourcc, fps, sz, True)