概率论与数理统计
概率论的基本概念
随机事件与随机变量
我们将对社会现象和自然现象进行的观察以及各种科学实验统称为试验。
在随机试验中必然发生的事件称为必然事件,用符号
Ω
\Omega
Ω表示。
在随机试验中必然不可能发生的事件称为不可能事件,用符号
Θ
\Theta
Θ表示。
称在随机事件 E E E中必发生一个且仅发生一个的最简单事件为试验 E E E的基本事件,由若干基本事件组合而成的事件称为复合事件。
概率
概率是对随机事件发生可能性大小的一个客观度量。
古典概率
设试验
E
E
E为古典概型试验,
A
i
(
i
=
1
,
2
,
⋅
⋅
⋅
,
n
)
A_i(i=1,2,···,n)
Ai(i=1,2,⋅⋅⋅,n)是全体基本事件,则由
P
(
A
)
=
A
所含基本事件个数
基本事件总数
P(A)=\frac{A所含基本事件个数}{基本事件总数}
P(A)=基本事件总数A所含基本事件个数
所确定的概率称为事件A的古典概率
概率的公理化定义与性质
设随机试验 E E E的样本空间为 Ω \Omega Ω,若对于 E E E的 每一事件 A A A都对应一个实数P(A),其对应规则满足以下三条:
- 非负性
- 规范性
- 可列可加性
条件概率
条件概率是一个重要的概念,它是在已知事件
B
B
B发生的条件下,事件
A
A
A发生可能性大小的客观度量。
定义:
设
A
A
A,
B
B
B是随机试验
E
E
E的两个随机事件,且
P
(
B
)
>
0
P(B)>0
P(B)>0,则称
P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B)=\frac{P(AB)}{P(B)} P(A∣B)=P(B)P(AB)
为在事件 B B B发生的条件下,事件 A A A发生的概率
贝叶斯公式
事件的独立性
随机变量的分布
离散型随机变量
伯努利试验与二项分布
将一个试验在相同条件下重复进行n次,如果在每次试验中,任一事件出现的概率与其他各次试验结果无关,则称这n次试验是n次独立重复试验。
n次重复独立的伯努利试验称为n重伯努利试验,或称伯努利概型。
泊松分布
连续型随机变量
概率密度函数
几种连续型分布
- 均匀分布
- 指数分布
正态分布
多维随机变量
二维随机变量及其分布
联合分布 函数
联合分布率
联合概率密度
二维均匀分布(集合概率)
二维正态分布
随机变量的独立性
条件分布
随机变量的数字特征
数学期望
随机变量的方差
几种常见分布的数学期望与方差
二项分布
泊松分布
均匀分布
指数分布
正态分布
协方差、相关系数与矩
多维正态随机变量
大数定律与中心极限定理
随机变量序列的收敛性
大数定律
切比雪夫不等式
大数定律
- 切比耶雪夫大数定律
- 独立同分布大数定律
- 辛钦大数定律
- 伯努利大数定律