【Python环境搭建】Miniconda的安装及配置教程


前言

Python开发的世界里,环境管理与包管理是两项至关重要的任务。一个高效、稳定的环境能够帮助开发者更专注于代码本身,而无需因为依赖冲突或环境配置问题而分心。在众多工具中,Conda以其强大的功能和便捷的操作,成为许多开发者的首选。


一、Miniconda

1.Conda介绍

Conda是一个通用的包管理系统,它用于安装、管理和更新Python软件包和其它软件。Conda可
以理解为一个工具,也是一个可执行命令,其核心功能是包管理与环境管理。通过Conda,用户
可以轻松安装和管理多个版本的Python以及相关的软件包。
Miniconda是Conda的轻量级版本,它只包含最基本的内容——Python解释器Conda包管理器,以及相关的必需的依赖项

2.Miniconda的优势

轻量化:Miniconda的安装包体积远小于Anaconda,仅包含必需的核心组件。这不仅节省了存储空间,还缩短了安装时间。
灵活性:用户可以完全掌控自己的开发环境,只安装所需的包,避免了臃肿的环境配置。
一致性:尽管Miniconda是轻量版,但它依然继承了Conda的所有功能,包括强大的包管理和环境管理能力。
跨平台兼容:同样地,Miniconda支持Windows、macOS和Linux,为开发者提供了在不同操作系统间流畅切换的可能。

通过安装 Miniconda ,用户可以从零开始构建自己的Python开发环境。这意味着,用户可以根据实际需求,自行选择需要安装的包,而无需一次性下载和安装大量默认包。

3.适用场景

Miniconda特别适合以下几类用户:
●需要精简开发环境的用户
●希望从零开始构建定制环境的用户
●对存储空间或下载时间有严格要求的用户
●在不同操作系统上开发或部署应用的用户

通过使用Miniconda,开发者不仅可以更高效地管理Python开发环境,还能享受到定制化配置带来的自由与便利。在接下来的部分,我们将详细介绍如何安装和使用Miniconda,帮助您快速搭建自己的Python开发环境。

二、下载安装

1.下载

(1)下载地址https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/?C=M&O=D
(本文以Win11为例)

(2)直达链接仅适用Windows下最新版最新地址):https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-latest-Windows-x86_64.exe

Windows用户:选择文件名Windows-x86_64.exe结尾
Linux用户:选择文件名Linux-x86_64.sh结尾
MacOS-Intel用户:选择文件名MacOSX-x86_64.sh结尾
MacOS-Arm用户:选择文件名MacOSX-arm64.sh结尾

在这里插入图片描述

2.安装

(1)解压

在这里插入图片描述

(2)解压后双击安装

在这里插入图片描述

(3)Next→ I Agree

在这里插入图片描述

在这里插入图片描述

(4)勾选"All Users(requires admin privileges)"

在这里插入图片描述

(5)修改安装路径 D:\miniconda3

在这里插入图片描述

(6)三个都勾选 → Next

三个选项分别对应:
●创建快捷方式
●注册python3.12版本
●清除安装包

由于这个版本不会自动添加环境变量,所以后续需要自己手动添加环境变量

在这里插入图片描述

在这里插入图片描述

(7)取消勾选 → Finish

在这里插入图片描述

三、环境配置

1.配置环境变量

(1)按 win + R 输入 sysdm.cpl后确定

在这里插入图片描述

(2)高级 → 环境变量

在这里插入图片描述

(3)在系统变量找到 Path → 点击编辑

在这里插入图片描述

然后选择新建,将Miniconda.3的安装路径 + \condabin 填写进去

(我新建所填内容:D:\miniconda3\condabin ,请根据你的实际安装路径填写,填写完成后所有的窗口
点击确定

在这里插入图片描述

路径查看如下

在这里插入图片描述

复制

在这里插入图片描述

(4)检查是否配置成功

win + R 后输入 cmd确定

在这里插入图片描述

输入 conda -V (注意V是大写)

在这里插入图片描述

出现如下结果即配置成功

在这里插入图片描述

2.换源

A. 正常换源流程

由于网络问题或地理位置原因,访问Conda的默认源(通常是国外的服务器)可能会很慢,甚至无
法访问。这时,我们就需要将Conda的源更换为国内或其他速度更快的镜像源,以提高包的下载速度
和安装成功率

(1)按 win + R 输入如下命令会使用记事本打开Conda的配置文件.condarc

notepad %USERPROFILE%\.condarc

在这里插入图片描述

若提示创建新文件,选择“是”

在这里插入图片描述

(2)

将如下其中一个镜像源内容复制粘贴到.condarc.里并按 Ctrl + S 快捷键保存文件

在这里插入图片描述

镜像源一:

channels:
  - defaults
show_channel_urls: true
channel_alias: https://mirrors.tuna.tsinghua.edu.cn/anaconda
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

镜像源二:

channels:
  - defaults
show_channel_urls: true
channel_alias: https://mirrors.ustc.edu.cn/anaconda
default_channels:
  - https://mirrors.ustc.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/pkgs/free
  - https://mirrors.ustc.edu.cn/anaconda/pkgs/r
  - https://mirrors.ustc.edu.cn/anaconda/pkgs/pro
  - https://mirrors.ustc.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.ustc.edu.cn/anaconda/cloud
  msys2: https://mirrors.ustc.edu.cn/anaconda/cloud
  bioconda: https://mirrors.ustc.edu.cn/anaconda/cloud
  menpo: https://mirrors.ustc.edu.cn/anaconda/cloud
  pytorch: https://mirrors.ustc.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.ustc.edu.cn/anaconda/cloud

B. 可能出现的问题及解决方法

可能在Win11以下会遇到 “按win + R 输入如下命令会使用记事本打开Conda的配置文件.condarc 无法执行成功的问题,此时需要自己在 C盘用户 下自己手动新建配置文件 .condarc 注意在正确的位置新建配置文件)

(1)新建 `.condarc .txt 文件
在这里插入图片描述

正常换源,复制进去

在这里插入图片描述

(2)点击文件另存为 → 文件名:.condarc ,保存类型:所有文件保存

在这里插入图片描述

在这里插入图片描述

如果遇到其他问题,请自行查阅其他资料

3.环境配置保存路径存在中文问题的解决方法

修改虚拟环境保存路径
使用Conda创建Python虚拟环境时,默认保存到c盘当前用户目录下,当我们当前用户为非英文用
户名时就会出现无法找到环境的问题,并且如果所有东西都存放在C盘会导致其非常臃肿,因此可以
修改保存路径,修改了保存路径之后再安装的虚拟环境就会保存到新的路径里。

(1)win + R 输入cmd 确定后 输入conda config --add envs_dirs D:\miniconda3\envs(注意此命令根据自己实际安装目录修改输入)回车conda info回车

比如我当前miniconda安装目录为 :D:\miniconda3 ,那么我的命令如下
conda config --add envs_dirs D:\miniconda3\envs
(注意:请根据自己实际的miniconda安装目录修改如下命令中的路径)

在这里插入图片描述

查看conda相关信息

在这里插入图片描述

(2)进入miniconda:安装目录,找到envs文件夹,按照如下步骤修改envs文件夹权限:

属性

在这里插入图片描述

安全 → 编辑

在这里插入图片描述

选择User → 勾选 → 确定

在这里插入图片描述

注意:点击确定保存后,需要重新打开一个新的cmd终端,在这个新打开的终端中我们的配置才会生效。

四.Conda的使用

1.列出所有的虚拟环境(默认情况下安装完该软件后会自带一个名为base的虚拟环境):

conda env list

在这里插入图片描述

2.进入某个虚拟环境(比如进入默认的base环境,进入后会在前面显示所进入的虚拟环境名字):

conda activate base

在这里插入图片描述

3.退出当前虚拟环境:

conda deactivate 

在这里插入图片描述

4.创建新的虚拟环境(其中的python311为虚拟环境的名字,可以随便命名(非中文);3.11为指定的
Python版本(也可以修改为其他版本)),过程中需要输入y 确认:

conda create -n python311 python=3.11

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

5.输入 python-V 可以看到该虚拟环境的版本

在这里插入图片描述

当有使用不同的Python版本需求时,只需要按照如下步骤操作即可(其中的 env_name 可以修改为你
想要取的不包含中文名字,version 修改为你所要的版本):

(1)创建对应Python版本的虚拟环境:

conda create -n env_name python=version

(2)进入对应虚拟环境;

conda activate env_name

(3)使用完毕,退出虚拟环境:

conda deactivate

总结

在本篇中,我们通过 Miniconda 的下载安装以及环境搭建,完成了 Python 开发环境的快速配置。无论是为项目隔离依赖,还是切换不同的 Python 版本,Miniconda 都为开发者提供了高效的解决方案。


如果你觉得这篇文章对你有帮助,欢迎点赞,你的支持是我分享更多免费优质内容的动力!

### 使用 PythonMiniconda安装和设置指南 #### 安装 Miniconda Miniconda 是一个轻量级的 Conda 发行版,Conda 则是一个开源包管理和环境管理系统[^1]。为了使用 PythonMiniconda 进行开发工作,首先需要下载并安装 Miniconda。 对于 Linux 或 macOS 用户: ```bash wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh bash ~/miniconda.sh -b -p $HOME/miniconda export PATH="$HOME/miniconda/bin:$PATH" ``` 对于 Windows 用户,则可以从官方网站下载对应的安装程序,并按照提示完成图形化界面下的安装过程。 #### 创建虚拟环境 创建一个新的独立环境可以避免不同项目之间的依赖冲突。通过下面命令来建立名为 `myenv` 的新环境,并指定要使用的 Python 版本: ```bash conda create --name myenv python=3.x ``` 激活该环境以便在其内部操作软件包管理器 conda 及 pip 工具: ```bash conda activate myenv ``` 此时可以在环境中自由地安装所需的库而不会影响其他项目的配置。 #### 管理 Python 包 在已激活的环境下,可以通过两种方式之一添加额外的功能模块至当前的工作空间内——利用内置工具 conda 或者传统的 pip 命令行实用程序来进行扩展。 使用 conda安装 NumPy 库作为例子: ```bash conda install numpy ``` 如果某些特定版本仅能在 PyPI 上获取的话,那么就应当借助于 pip 实现相同目的: ```bash pip install requests==2.25.0 ``` 以上就是关于如何结合 Python 以及 Miniconda 设置开发环境的一个简单介绍。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值