华为OD机试 Python【局域网病毒感染时间计算】

题目

一个局域网内有很多台电脑,分别标注为 0 ~ N-1 的数字。相连接的电脑距离不一样,所以感染时间不一样,感染时间用 t 表示。其中网络内一台电脑被病毒感染,求其感染网络内所有的电脑最少需要多长时间。如果最后有电脑不会感染,则返回-1。给定一个数组 times 表示一台电脑把相邻电脑感染所用的时间。

如图:path[i] = {i, j, t} 表示:电脑 i->j,电脑 i 上的病毒感染 j,需要时间 t。
在这里插入图片描述

输入描述
4
3
2 1 1
2 3 1
3 4 1
2
输出描述
2

解题思路

该问题可以抽象为带权图中的最短路径问题。使用Dijkstra算法来计算从某一台电脑开始感染其它所有电脑所需的最短时间。如果存在电脑无法被感染,则返回-1。

代码

import heapq

### 华为OD中的Python编程题及解法 #### 九宫格问题解析 在华为OD中,有一类典型的题目是关于九宫格的操作。这类题目通常涉及在一个3×3的矩阵内移动字符或数字来达到特定的目标状态。 对于此类问题的一个实例,在给定初始状态下通过一系列合法操作转换为目标状态的过程中,可以采用广度优先搜索算法(BFS)求解最短路径[^2]。下面是一个简化版的例子: ```python from collections import deque def bfs(start, target): queue = deque([(start, "")]) visited = set([start]) while queue: state, path = queue.popleft() if state == target: return path empty_index = state.index('0') x, y = divmod(empty_index, 3) for dx, dy in ((0,-1), (-1,0), (1,0), (0,1)): nx, ny = x + dx, y + dy if 0 <= nx < 3 and 0 <= ny < 3: new_state = list(state) n_pos = nx * 3 + ny # Swap positions of '0' with adjacent number. new_state[empty_index], new_state[n_pos] = new_state[n_pos], new_state[empty_index] str_new_state = ''.join(new_state) if str_new_state not in visited: visited.add(str_new_state) queue.append((str_new_state, path + str(n_pos))) # Example usage print(bfs("867254301", "123804765")) ``` 此代码片段展示了如何利用BFS解决从起始布局到目标布局之间的最小步数计算问题。这里假设输入字符串表示的是一个扁平化后的二维数组形式的状态,其中`'0'`代表空白位置。 #### 准备建议 针对华为OD,除了熟悉常见的数据结构和算法外,还应该注重练习实际编写程序的能力以及理解业务场景下的需求分析技巧。多做模拟测并总结经验教训有助于提高应水平[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AlgorithmHero

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值