使用AMD CPU实例部署通义千问Qwen-Audio-Chat

介绍

Qwen-Audio是阿里云研发的大规模音频语言模型(Large Audio Language Model)。Qwen-Audio可以以多种音频(包括说话人语音、自然音、音乐、歌声)和文本作为输入,并以文本作为输出。在Qwen-Audio的基础上,利用对齐机制打造出基于大语言模型的语音AI助手Qwen-Audio-Chat,它支持更灵活的交互方式,包括多音频、多轮问答、创作等能力。支持多种语音场景,包括声音理解和推理、音乐欣赏、多音频分析、多轮音频-文本交错对话以及外部语音工具的使用等。

资源编排服务(Resource Orchestration Service, ROS)是阿里云提供基于基础设施即代码(Infrastructure as Code, IaC) 理念的自动化部署服务,我们可以通过定义一个 Terraform 模板,轻松部署云上的 Qwen-Audio-Chat 模型。

⚠️说明:
Qwen-Audio-Chat模型依照LICENSE开源,免费商用需填写商业授权申请。您应自觉遵守第三方模型的用户协议、使用规范和相关法律法规,并就使用第三方模型的合法性、合规性自行承担相关责任。

部署步骤

  1. 登录ROS控制台 Qwen-Audio-Chat 部署页面
  2. 配置模板参数:选择 ECS 实例的实例类型、可用区参数
  3. 点击【下一步】,然后点击【创建】进行资源部署。部署完成后,点击资源栈的输出,即可看到 Qwen-Audio-Chat 服务的地址。点击链接即可体验 Qwen-Audio-Chat 的功能。

4.单击Upload(上传文件)上传语音文件,然后在Input对话框中,输入对话内容,单击Submit(发送),即可开始语音问答、创作等。

部署原理

我们可以看到通过 ROS 可以非常快捷地部署阿里云上的各种云资源(比如 VPC、VSwitch、ECS 实例等)和应用程序(比如 Qwen-Audio-Chat)。如果想了解是如何做到的,那么可以阅读此章节。

  1. 编写 Terraform 模板。在如下模板中定义了:
  • resource:定义了 vpc、vswitch、ecs、安全组、安全组规则以及安装 Qwen-Audio-Chat 的命令执行。
  • variable:定义了常用的参数,比如可用区、ECS实例类型类型。
  • output:定义了自定义输出,比如 Qwen-Audio-Chat 服务的地址
variable "zone_id" {
  type        = string
  description = <<EOT
  {
    "AssociationProperty": "ZoneId",
    "Label": {
      "zh-cn": "可用区ID",
      "en": "Zone ID"
    }
  }
  EOT
}

variable "instance_type" {
  type        = string
  description = <<EOT
  {
    "Label": {
        "zh-cn": "实例类型",
        "en": "Instance Type"
    },
    "AssociationProperty": "ALIYUN::ECS::Instance::InstanceType",
    "AssociationPropertyMetadata": {
      "Constraints": {
        "Memory": [
          64
        ]
      }
    }
  }
  EOT
  default     = "ecs.g8a.4xlarge"
}

resource "alicloud_vpc" "vpc" {
  vpc_name   = "qwen-audio-vpc"
  cidr_block = "192.168.0.0/16"
}

resource "alicloud_vswitch" "vswitch" {
  vpc_id     = alicloud_vpc.vpc.id
  zone_id    = var.zone_id
  cidr_block = "192.168.0.0/24"
}


resource "alicloud_security_group" "group" {
  vpc_id = alicloud_vpc.vpc.id
}

resource "alicloud_security_group_rule" "rule" {
  type              = "ingress"
  ip_protocol       = "tcp"
  nic_type          = "intranet"
  policy            = "accept"
  port_range        = "7860/7860"
  priority          = 1
  security_group_id = alicloud_security_group.group.id
  cidr_ip           = "0.0.0.0/0"
}

resource "alicloud_instance" "ecs" {
  availability_zone          = var.zone_id
  security_groups            = alicloud_security_group.group.*.id
  instance_type              = var.instance_type
  system_disk_category       = "cloud_essd"
  image_id                   = "aliyun_3_x64_20G_alibase_20240528.vhd"
  instance_name              = "qwen-audio"
  vswitch_id                 = alicloud_vswitch.vswitch.id
  internet_max_bandwidth_out = 10
  system_disk_size = 100
  password = "Ros12345"
}

locals {
  command         = <<EOF
#!/bin/bash
sudo dnf config-manager --add-repo=https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
sudo dnf -y install dnf-plugin-releasever-adapter --repo alinux3-plus
sudo dnf -y install docker-ce --nobest
sudo systemctl start docker
sudo systemctl enable docker
sudo docker pull registry.openanolis.cn/openanolis/pytorch-amd:1.13.1-23-zendnn4.1
sudo docker run -d --name pytorch-amd --net host -v $HOME:/root registry.openanolis.cn/openanolis/pytorch-amd:1.13.1-23-zendnn4.1 sh -c "tail -f /dev/null" &
wget https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/en-US/20231213/celp/deploy_qwen-audio-chat_amd-docker.sh
wget https://johnvansickle.com/ffmpeg/releases/ffmpeg-6.1-amd64-static.tar.xz
sed -i 's/hwloc / /' deploy_qwen-audio-chat_amd-docker.sh
sed -i 's/"python-einops"/python-einops --skip-broken/' deploy_qwen-audio-chat_amd-docker.sh
sed -i 's/@ 2>\&1/@ > output.log 2>\&1/' deploy_qwen-audio-chat_amd-docker.sh
sudo docker exec -w /root pytorch-amd sh -c '
chmod +x ./deploy_qwen-audio-chat_amd-docker.sh
./deploy_qwen-audio-chat_amd-docker.sh
'
EOF
  base_64_command = base64encode(local.command)
}

resource "alicloud_ecs_command" "command" {
  name            = "qwen-audio-command"
  command_content = local.base_64_command
  type            = "RunShellScript"
  timeout         = 7200
  working_dir     = "/root"
}

resource "alicloud_ecs_invocation" "default" {
  command_id  = alicloud_ecs_command.command.id
  instance_id = [alicloud_instance.ecs.id]
  timeouts {
    create = "7200s"
  }
}

output "Url" {
  description = <<EOT
  {
    "Label": "Web 访问地址",
    "Description": "Qwen Audio Chat页面访问地址."
  }
  EOT
  value = format("http://%s:7860", alicloud_instance.ecs.public_ip)
}
  1. 在 ROS 控制台中使用此模板创建资源栈。ROS 会自动解析出模板中资源的依赖关系,按照资源依赖顺序创建云资源。如果资源间没有依赖,则会并发创建,从而提升部署效率。ROS 会把这次创建的所有资源存放到一个“资源栈”中,后续可以方便地管理这组资源集合。比如:
  • 将新模板应用到这个“资源栈”中,从而更新里面的资源。
  • 删除这个“资源栈”,从而把所有的资源删掉。

总结

基于 IaC 的理念,通过定义一个模板,使用 ROS 进行自动化部署,可以非常高效快捷地部署任意云资源和应用(比如 Qwen-Audio-Chat 服务)。相比于手动部署或者通过 API、SDK 的部署方式,有着高效、稳定等诸多优势,也是服务上云的最佳实践。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值