必修一对数函数知识点

对数函数

概念

一般地,把函数 y = log ⁡ a x ( a > 0 y=\log_ax(a>0 y=logax(a>0 a ≠ 1 ) a\neq1) a=1) 叫做对数函数,其中 x x x 是自变量,定义域是 ( 0 , + ∞ ) (0,+\infty) (0,+)

可能的坑:判断 f ( x ) = 2 log ⁡ 4 x f(x)=2\log_4x f(x)=2log4x 是不是对数函数 答案:是, 2 log ⁡ 4 x = log ⁡ 2 x 2\log_4x=\log_2x 2log4x=log2x

性质

  1. 对数函数 y = log ⁡ a x y=\log_ax y=logax 与指数函数 y = a x y=a^x y=ax 关于直线 y = x y=x y=x 对称。

    → \to 它们互为反函数,可以根据指数函数性质来推对数函数性质。(如果你知道反函数的性质的话)

  2. 定义域: ( 0 , + ∞ ) (0,+\infty) (0,+) 值域: R \R R

  3. 单调性: a > 1 a>1 a>1 时,在定义域上单调递增, 0 < a < 1 0<a<1 0<a<1 时在定义域上单调递减。

  4. 图像过定点 ( 1 , 0 ) (1,0) (1,0)

  5. y y y 轴右侧的图像,底大图低

与对数有关的其他函数性质

  1. 常见奇偶函数:

    ​ 奇函数: log ⁡ a k + x k − x \log_a\frac{k+x}{k-x} logakxk+x log ⁡ a ∣ k − x k + x ∣ \log_a|\frac{k-x}{k+x}| logak+xkx log ⁡ a ( ( k x ) 2 + 1 ± a x ) \log_a(\sqrt{(kx)^2+1}\pm ax) loga((kx)2+1 ±ax)

    ​ 偶函数: log ⁡ a ∣ x ∣ \log_a|x| logax

    log ⁡ a k + x k − x = log ⁡ a ( k + x ) − log ⁡ a ( k − x ) \log_a\frac{k+x}{k-x}=\log_a(k+x)-\log_a(k-x) logakxk+x=loga(k+x)loga(kx) 注意变形。

例题

  1. 已知函数 f ( x ) = lg ⁡ ( a x 2 + 2 x + 1 ) f(x)=\lg(ax^2+2x+1) f(x)=lg(ax2+2x+1) ,若 f ( x ) f(x) f(x)值域 R \R R ,则实数 a a a 的取值范围为___。

​ 解: f ( x ) ∈ R → a x 2 + 2 x + 1 f(x)\in\R \to ax^2+2x+1 f(x)Rax2+2x+1 的值域 ⊇ ( 0 , + ∞ ) \supseteq(0,+\infty) (0,+)

1 ° a = 0 1\degree a=0 a=0 2 x + 1 ∈ R ⊇ ( 0 , + ∞ ) 2x+1\in\R\supseteq(0,+\infty) 2x+1R(0,+)

2 ° a > 0 2\degree a>0 a>0 Δ = 4 − 4 a ≥ 0 \Delta=4-4a\ge0 Δ=44a0 解得 a ∈ ( 0 , 1 ] a\in(0,1] a(0,1]

​ 综上, a ∈ [ 0 , 1 ] a\in[0,1] a[0,1]

  1. 指数函数 f ( x ) = log ⁡ a ( x − 1 ) + 2 f(x)=\log_a(x-1)+2 f(x)=loga(x1)+2 恒过定点___。

​ 解:指数函数恒过 ( 1 , 0 ) (1,0) (1,0),考虑平移得 ( 2 , 2 ) (2,2) (2,2)

  1. 指数函数 f ( x ) = log ⁡ a ( 8 − 3 a x ) f(x)=\log_a(8-3ax) f(x)=loga(83ax) [ − 1 , 1 ] [-1,1] [1,1] 上是减函数,求 a a a 的取值范围___。

    解: a > 0 a>0 a>0 a ≠ 1 → 8 − 3 a x a\neq 1\to8-3ax a=183ax 递减,

    ​ “同增异减” 得 a > 1 a>1 a>1

    ​ 真数大于 0 0 0 ( 8 − 3 a x ) m i n > 0 (8-3ax)_{min}>0 (83ax)min>0 x = 1 x=1 x=1 带入解得 a < 4 3 a<\frac{4}{3} a<34

    ​ 综上, a ∈ ( 1 , 4 2 ) a\in(1,\frac{4}{2}) a(1,24)

  2. 已知函数 f ( x ) = log ⁡ a ( 10 + x ) − log ⁡ a ( 10 − x ) f(x)=\log_a(10+x)-\log_a(10-x) f(x)=loga(10+x)loga(10x) a > 0 a>0 a>0 a ≠ 1 a\neq 1 a=1 ,解不等式: f ( x ) > 0 f(x)>0 f(x)>0

​ 解:(抽象函数不等式考虑单调性)易证 f ( x ) f(x) f(x) 为奇函数, f ( 0 ) = 0 f(0)=0 f(0)=0

f ( x ) > 0 → f ( x ) > f ( 0 ) f(x)>0\to f(x)>f(0) f(x)>0f(x)>f(0)

1 ° a > 1 1\degree a>1 a>1

log ⁡ a ( 10 + x ) \log_a(10+x) loga(10+x) 递增, log ⁡ a ( 10 − x ) \log_a(10-x) loga(10x) 递减,则 − log ⁡ a ( 10 − x ) -\log_a(10-x) loga(10x) 递增

​ 故 f ( x ) f(x) f(x) 递增,结合定义域 x ∈ ( 0 , 10 ) x\in(0,10) x(0,10)

2 ° 0 < a < 1 2\degree 0<a<1 2°0<a<1 时,与上面一种情况恰恰相反, x ∈ ( − 10 , 0 ) x\in(-10,0) x(10,0)

​ 综上, 0 < a < 1 0<a<1 0<a<1 x ∈ ( − 10 , 0 ) x\in(-10,0) x(10,0) a > 1 a>1 a>1 x ∈ ( 0 , 10 ) x\in(0,10) x(0,10)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值