经验汇总
尽力了,Typora的格式这里适配不了。欢迎查看格式优良的PDF。
利用常数1
- 已知 a > 0 a>0 a>0, b > 0 b>0 b>0, 2 a + 1 b = 1 \frac{2}{a}+\frac{1}{b}=1 a2+b1=1,求 a + b a+b a+b 最小值
\\
解: a + b = 1 ⋅ ( a + b ) = ( 2 a + 1 b ) ( a + b ) a+b=1\cdot(a+b)=(\frac{2}{a}+\frac{1}{b})(a+b) a+b=1⋅(a+b)=(a2+b1)(a+b)
a + b = 2 + a b + 2 b a + 1 = 2 + a b + 2 b a a+b=2+\frac{a}{b}+\frac{2b}{a}+1=2+\frac{a}{b}+\frac{2b}{a} a+b=2+ba+a2b+1=2+ba+a2b
由基本不等式得,
(
a
+
b
)
m
i
n
=
3
+
2
2
(a+b)_{min}=3+2\sqrt{2}
(a+b)min=3+22
\\
2. 已知
a
>
0
a>0
a>0,
b
>
0
b>0
b>0,
a
+
b
=
1
a+b=1
a+b=1,求
3
a
b
+
1
a
b
\frac{3a}{b}+\frac{1}{ab}
b3a+ab1 最小值
\\
解: ( a + b ) 2 = 1 (a+b)^2=1 (a+b)2=1
3 a b + 1 a b = 3 a b + ( a + b ) 2 a b = 3 a b + a b + 2 + b a \frac{3a}{b}+\frac{1}{ab}=\frac{3a}{b}+\frac{(a+b)^2}{ab}=\frac{3a}{b}+\frac{a}{b}+2+\frac{b}{a} b3a+ab1=b3a+ab(a+b)2=b3a+ba+2+ab
3 a b + 1 a b = 4 a b + a b + 2 \frac{3a}{b}+\frac{1}{ab}=\frac{4a}{b}+\frac{a}{b}+2 b3a+ab1=b4a+ba+2
由基本不等式得 ( 3 a b + 1 a b ) m i n = 6 (\frac{3a}{b}+\frac{1}{ab})_{min}=6 (b3a+ab1)min=6
\\
- (多选)已知函数 f ( x ) f(x) f(x) 的定义域是 ( 0 , ∞ ) (0,\infty) (0,∞) 且 f ( x ) − f ( y ) = x y f(x)-f(y)=\frac{x}{y} f(x)−f(y)=yx,当 x > 1 x>1 x>1 时, f ( x ) > 0 f(x)>0 f(x)>0,且 f ( 1 2 ) = − 1 f(\frac{1}{2})=-1 f(21)=−1
A. f ( 1 ) = 0 f(1)=0 f(1)=0
B. 函数 f ( x ) f(x) f(x) 在 ( 0 , + ∞ ) (0,+\infty) (0,+∞) 上单调递增
C. f ( 2 ) + f ( 1 2 ) + f ( 3 ) + f ( 1 3 ) + ... + f ( 2024 ) + f ( 1 2024 ) = 0 f(2)+f(\frac{1}{2})+f(3)+f(\frac{1}{3})+\text{...}+f(2024)+f(\frac{1}{2024})=0 f(2)+f(21)+f(3)+f(31)+...+f(2024)+f(20241)=0
D. 满足不等式 f ( x ) − f ( x − 1 ) ≥ 2 f(x)-f(x-1)\ge 2 f(x)−f(x−1)≥2 的 x x x 的取值范围是 ( 1 , 4 3 ] (1,\frac{4}{3}] (1,34]
\\
解: A.选项: f ( x ) − f ( 1 ) = f ( x 1 ) = f ( x ) f(x)-f(1)=f(\frac{x}{1})=f(x) f(x)−f(1)=f(1x)=f(x) 故 f ( 1 ) = 0 f(1)=0 f(1)=0 A.正确
B. 要证明单调性,我们要利用好 “ 当 x > 1 x>1 x>1 时, f ( x ) > 0 f(x)>0 f(x)>0 ” 这个条件。
观察到函数定义域大于零,题目条件又有商的形式,那很可能是作商法
设 0 < x 1 < x 2 0<x_1<x_2 0<x1<x2 则有 f ( x 2 ) − f ( x 1 ) = f ( x 2 x 1 ) f(x_2)-f(x_1)=f(\frac{x_2}{x_1}) f(x2)−f(x1)=f(x1x2)
则 x 2 x 1 > 1 ⇒ f ( x 2 ) − f ( x 1 ) = f ( x 2 x 1 ) > 0 \frac{x_2}{x_1}>1\Rightarrow f(x_2)-f(x_1)=f(\frac{x_2}{x_1})>0 x1x2>1⇒f(x2)−f(x1)=f(x1x2)>0 故 f ( x ) f(x) f(x) 单调递增 B.错误
(要得到大于 1 1 1,就应该拿大的除以小的)
C. 原式 = f ( 2 ) + f ( 1 ) − f ( 2 ) + f ( 3 ) + f ( 1 ) − f ( 3 ) + ... + f ( 2024 ) + 1 − f ( 2024 ) =f(2)+f(1)-f(2)+f(3)+f(1)-f(3)+\text{...}+f(2024)+1-f(2024) =f(2)+f(1)−f(2)+f(3)+f(1)−f(3)+...+f(2024)+1−f(2024)
= 2023 f ( 1 ) = 0 =2023f(1)=0 =2023f(1)=0 C.正确
D. f ( x ) − f ( x − 1 ) ≥ 2 ⇒ f ( x x − 1 ) ≥ 2 f(x)-f(x-1)\ge 2\Rightarrow f(\frac{x}{x-1})\ge 2 f(x)−f(x−1)≥2⇒f(x−1x)≥2
抽象函数不等式考虑单调性,那我们就需要找到一个基准,利用 f ( 1 ) f(1) f(1) 和 f ( 1 2 ) f(\frac{1}{2}) f(21) 的值可以求出 f ( 2 ) = 1 f(2)=1 f(2)=1
观察可得 f ( 2 ) − f ( 1 2 ) = f ( 2 1 2 ) = f ( 4 ) = 2 f(2)-f(\frac{1}{2})=f(\frac{2}{\frac{1}{2}})=f(4)=2 f(2)−f(21)=f(212)=f(4)=2
那么 $ f(\frac{x}{x-1})\ge 2\Rightarrow \frac{x}{x-1}\ge 4$ 结合定义域解一下 x ∈ ( 1 , 4 3 ) x\in(1,\frac{4}{3}) x∈(1,34) D.正确
答案:ACD
\\
同构
同构+函数性质
- 若 2 a + log 2 a = 4 b + 2 log 4 b 2^a+\log_2a=4^b+2\log_4b 2a+log2a=4b+2log4b,则 a a a___ 2 b 2b 2b(比较大小)
\\
解: 2 a + log 2 a = 2 2 b + log 2 b 2^a+\log_2a=2^{2b}+\log_2b 2a+log2a=22b+log2b 要比较大小要让左右尽可能同构且待比较元素为自变量,然后利用函数单调性求解,现在只缺 log 2 2 b \log_22b log22b
观察可得 log 2 2 b = log 2 b + log 2 2 = log 2 b + 1 \log_22b=\log_2b+\log_22=\log_2b+1 log22b=log2b+log22=log2b+1
2 a + log 2 a = 2 2 b + log 2 2 b − 1 ⇒ 2 a + log 2 a < 2 2 b + log 2 2 b 2^a+\log_2a=2^{2b}+\log_22b-1\Rightarrow 2^a+\log_2a<2^{2b}+\log_22b 2a+log2a=22b+log22b−1⇒2a+log2a<22b+log22b
f ( x ) = 2 x + log 2 x f(x)=2^x+\log_2x f(x)=2x+log2x 单调递增,故 a < 2 b a<2b a<2b
\\
- 若 a a a, b > 1 b>1 b>1 且 a ⋅ e a < b ⋅ ln b a\cdot e^a<b\cdot\ln b a⋅ea<b⋅lnb,则 b b b___ e a e^a ea(比较大小)
\\
解:仍然考虑使得左右两边同构,观察可得
a
=
ln
e
a
a=\ln e^a
a=lnea
故 e a ⋅ ln ( e a ) < b ln b e^a\cdot\ln(e^a)<b\ln b ea⋅ln(ea)<blnb
f ( x ) = x ⋅ ln x f(x)=x\cdot\ln x f(x)=x⋅lnx 在 ( 1 , + ∞ ) (1,+\infty) (1,+∞) 上单调递增,故 b > e a b>e^a b>ea
\\
- 若 ∃ x ∈ ( 1 , + ∞ ) \exist x\in(1,+\infty) ∃x∈(1,+∞), a > 0 a>0 a>0 且 e x − x ≤ x a − a ln x e^x-x\le x^a-a\ln x ex−x≤xa−alnx,求 a a a 的最小值(不会求导可以保留 x x x 和 ln x \ln x lnx)
\\
解:仍然要构造同构,观察左边,可以把右边的 a ln x a\ln x alnx 作为 x x x ,又发现 e ln x a \large e^{\ln x^a} elnxa = e a ln x =e^{a\ln x} =ealnx
则 e x − x ≤ e a ln x + a ln x e^x-x\le e^{a\ln x}+a\ln x ex−x≤ealnx+alnx,又 ∵ f ( x ) = e x − x \because f(x)=e^x-x ∵f(x)=ex−x 在 ( 1 , + ∞ ) (1,+\infty) (1,+∞) 上单调递增
可得 x ≤ a ln x x\le a\ln x x≤alnx,考虑分离参数,且这里是存在性问题, a ≥ ( x ln x ) m i n a\ge(\frac{x}{\ln x})_{min} a≥(lnxx)min
故 a m i n = ( x ln x ) m i n a_{min}=(\frac{x}{\ln x})_{min} amin=(lnxx)min,利用导数相关知识可求出最小值为 e e e
\\
- 已知 c = 2 c=2 c=2, a = log 5 12 + log 121 25 a=\log_512+\log_{121}25 a=log512+log12125, 5 a + 1 2 a = 1 3 b 5^a+12^a=13^b 5a+12a=13b,比较 a a a, b b b, c c c 的大小。
\\
解:
a
=
log
5
12
+
log
11
5
a=\log_512+\log_{11}5
a=log512+log115,根据换底公式得
a
=
lg
12
lg
5
+
lg
5
lg
11
a=\frac{\lg12}{\lg5}+\frac{\lg5}{\lg11}
a=lg5lg12+lg11lg5,结合基本不等式:
a
=
lg
12
lg
5
+
lg
5
lg
11
≥
2
lg
12
lg
11
a
≥
2
log
11
12
>
2
1
a
>
2
=
c
∴
1
3
b
>
5
2
+
1
2
2
=
1
3
2
⇒
b
>
2
=
c
a=\frac{\lg12}{\lg5}+\frac{\lg5}{\lg11}\ge2\sqrt{\frac{\lg12}{\lg11}}\\ a\ge2\sqrt{\log_{11}12}>2\sqrt{1}\\ a>2=c\\ \therefore 13^b>5^2+12^2=13^2\Rightarrow b>2=c
a=lg5lg12+lg11lg5≥2lg11lg12a≥2log1112>21a>2=c∴13b>52+122=132⇒b>2=c
现在考虑
a
a
a 和
b
b
b 的大小,构造定义域为
(
2
,
+
∞
)
(2,+\infty)
(2,+∞) 的函数
g
(
x
)
=
5
x
+
1
2
x
−
1
3
x
g(x)=5^x+12^x-13^x
g(x)=5x+12x−13x,可以得到:
g
(
x
)
=
5
2
⋅
5
x
−
2
+
1
2
2
⋅
1
2
x
−
2
−
1
3
2
⋅
1
3
x
−
2
<
5
2
⋅
12
x
−
2
+
1
2
2
⋅
1
2
x
−
2
−
1
3
2
⋅
1
3
x
−
2
g
(
x
)
<
(
5
2
+
1
2
2
)
1
2
x
−
2
−
1
3
2
⋅
1
3
x
−
2
=
169
(
1
2
x
−
1
3
x
)
<
0
g
(
x
)
<
0
g(x)=5^2\cdot\color{red}{5}\color{black}{}^{x-2}+12^2\cdot12^{x-2}-13^2\cdot13^{x-2}<5^2\cdot\color{red}{12}\color{black}^{x-2}+12^2\cdot12^{x-2}-13^2\cdot13^{x-2}\\ g(x)<(5^2+12^2)12^{x-2}-13^2\cdot13^{x-2}=169(12^x-13^x)<0\\ g(x)<0
g(x)=52⋅5x−2+122⋅12x−2−132⋅13x−2<52⋅12x−2+122⋅12x−2−132⋅13x−2g(x)<(52+122)12x−2−132⋅13x−2=169(12x−13x)<0g(x)<0
由于
a
a
a 在
g
(
x
)
g(x)
g(x) 定义域内,可得:
5
a
+
1
2
a
−
1
3
a
<
0
5
a
+
1
2
a
<
1
3
a
1
3
b
<
1
3
a
∴
b
<
a
5^a+12^a-13^a<0\\ 5^a+12^a<13^a\\ 13^b<13^a\\ \therefore b<a
5a+12a−13a<05a+12a<13a13b<13a∴b<a
综上,
c
<
b
<
a
c<b<a
c<b<a。
\\
- 若函数 f ( x ) f(x) f(x) 的定义域是 R \R R,若对于任意的不相等的实数 x 1 x_1 x1 和 x 2 x_2 x2,恒有 f ( x 1 ) − f ( x 2 ) x 1 − x 2 < 1 \frac{f(x_1)-f(x_2)}{x_1-x_2}<1 x1−x2f(x1)−f(x2)<1,求关于 x x x 的不等式 f ( 2 x ) > f ( x + 1 ) + x − 1 f(2x)>f(x+1)+x-1 f(2x)>f(x+1)+x−1 的解集。
\\
解:不妨令
x
1
>
x
2
x_1>x_2
x1>x2,则:
f
(
x
1
)
−
f
(
x
2
)
<
x
1
−
x
2
f
(
x
1
)
−
x
1
<
f
(
x
2
)
−
x
2
f(x_1)-f(x_2)<x_1-x_2\\ f(x_1)-x_1<f(x_2)-x_2
f(x1)−f(x2)<x1−x2f(x1)−x1<f(x2)−x2
设
g
(
x
)
=
f
(
x
)
−
x
g(x)=f(x)-x
g(x)=f(x)−x 由上述不等式可得
g
(
x
)
g(x)
g(x) 单调递减。
f
(
2
x
)
−
2
x
>
f
(
x
+
1
)
+
x
−
1
−
2
x
f
(
2
x
)
−
2
x
>
f
(
x
+
1
)
−
x
−
1
g
(
2
x
)
>
g
(
x
+
1
)
2
x
<
x
+
1
x
∈
(
−
∞
,
1
)
f(2x)-2x>f(x+1)+x-1-2x\\ f(2x)-2x>f(x+1)-x-1\\ g(2x)>g(x+1)\\ 2x<x+1\\ x\in(-\infty,1)
f(2x)−2x>f(x+1)+x−1−2xf(2x)−2x>f(x+1)−x−1g(2x)>g(x+1)2x<x+1x∈(−∞,1)
\\
- 已知奇函数 f ( x ) f(x) f(x) 的定义域为 ( − ∞ , 0 ) ⋃ ( 0 , + ∞ ) (-\infty,0)\bigcup(0,+\infty) (−∞,0)⋃(0,+∞),满足对任意 x 1 , x 2 ∈ ( 0 , + ∞ ) x_1,x_2\in(0,+\infty) x1,x2∈(0,+∞),且 x 1 ≠ x 2 x_1\neq x_2 x1=x2,都有 x 1 f ( x 2 ) − x 2 f ( x 1 ) x 2 − x 1 < 0 \frac{x_1f(x_2)-x_2f(x_1)}{x_2-x_1}<0 x2−x1x1f(x2)−x2f(x1)<0,且 f ( 2 ) = 2 f(2)=2 f(2)=2,求关于 x x x 的不等式 f ( x ) > x f(x)>x f(x)>x 的解集。
\\
解:不妨令
0
<
x
1
<
x
2
0<x_1<x_2
0<x1<x2,则:
x
1
f
(
x
2
)
−
x
2
f
(
x
2
)
<
0
f
(
x
2
)
x
2
<
f
(
x
1
)
x
1
x_1f(x_2)-x_2f(x_2)<0\\ \frac{f(x_2)}{x_2}<\frac{f(x_1)}{x_1}\\
x1f(x2)−x2f(x2)<0x2f(x2)<x1f(x1)
设
g
(
x
)
=
f
(
x
)
x
g(x)=\frac{f(x)}{x}
g(x)=xf(x),则
g
(
x
)
g(x)
g(x) 在
(
0
,
+
∞
)
(0,+\infty)
(0,+∞) 上单调递减,
g
(
−
x
)
=
f
(
−
x
)
−
x
=
−
f
(
x
)
−
x
=
g
(
x
)
g(-x)=\frac{f(-x)}{-x}=\frac{-f(x)}{-x}=g(x)
g(−x)=−xf(−x)=−x−f(x)=g(x)
故
g
(
x
)
g(x)
g(x) 是偶函数,可得在
(
−
∞
,
0
)
(-\infty,0)
(−∞,0) 上单调递增。由于
f
(
2
)
=
2
f(2)=2
f(2)=2 所以
g
(
2
)
=
1
g(2)=1
g(2)=1。现在可以解不等式了:
1
°
x
>
0
f
(
x
)
x
>
1
g
(
x
)
>
g
(
2
)
x
<
2
1
°
x
<
0
f
(
x
)
x
<
1
g
(
x
)
<
g
(
2
)
=
g
(
−
2
)
x
<
−
2
1\degree x>0\\ \frac{f(x)}{x}>1\\ g(x)>g(2)\\ x<2\\ 1\degree x<0\\ \frac{f(x)}{x}<1\\ g(x)<g(2)=g(-2)\\ x<-2\\
1°x>0xf(x)>1g(x)>g(2)x<21°x<0xf(x)<1g(x)<g(2)=g(−2)x<−2
综上,
x
∈
(
−
∞
,
2
)
⋃
(
0
,
2
)
x\in(-\infty,2)\bigcup(0,2)
x∈(−∞,2)⋃(0,2)。
\\
同构+根存在
- 已知函数 f ( x ) = 4 x − 4 − x f(x)=4^x-4^{-x} f(x)=4x−4−x 在 [ m , n ] [m,n] [m,n] 上的值域为 [ k ( 4 m − 1 ) , k ( 4 n − 1 ) ] [k(4^m-1),k(4^n-1)] [k(4m−1),k(4n−1)] 求 k k k 的范围。
\\
解:易证 f ( x ) f(x) f(x) 是奇函数且单调递增。
{ 4 m − 1 4 m = k ( 4 m − 1 ) 4 n − 1 4 n = k ( 4 n − 1 ) \begin{cases}4^m-\frac{1}{4^m}=k(4^m-1)\\4^n-\frac{1}{4^n}=k(4^n-1)\end{cases} {4m−4m1=k(4m−1)4n−4n1=k(4n−1)
那么只要使关于 t t t 的方程 t − 1 t = k ( t − 1 ) t-\frac1t=k(t-1) t−t1=k(t−1) 有两个不同的正根
t 2 − 1 = k ( t 2 − t ) t^2-1=k(t^2-t) t2−1=k(t2−t)
( t − 1 ) [ ( k − 1 ) t − 1 ] = 0 (t-1)[(k-1)t-1]=0 (t−1)[(k−1)t−1]=0
t 1 = 1 , t 2 = 1 k − 1 t_1=1,t_2=\frac{1}{k-1} t1=1,t2=k−11
{ 1 k − 1 > 0 1 k − 1 ≠ 1 \begin{cases}\frac{1}{k-1}>0\\\frac{1}{k-1}\neq1\end{cases} {k−11>0k−11=1
解得 k ∈ ( 1 , 2 ) ⋃ ( 2 , + ∞ ) k\in(1,2)\bigcup(2,+\infty) k∈(1,2)⋃(2,+∞)
\\
根分布与分参
- 设函数 f k ( x ) = 2 x + ( k − 1 ) ⋅ 2 − x , ( x ∈ R , k ∈ Z ) f_k(x)=2^x+(k-1)\cdot 2^{-x}\text{, }(x\in\R\text{, }k\in\Z) fk(x)=2x+(k−1)⋅2−x, (x∈R, k∈Z)。设函数 g ( x ) = λ f 0 ( x ) − f 2 ( 2 x ) + 4 g(x)=\lambda f_0(x)-f_2(2x)+4 g(x)=λf0(x)−f2(2x)+4,若 g ( x ) g(x) g(x) 在 x ∈ [ 1 , + ∞ ) x\in[1,+\infty) x∈[1,+∞) 有零点,求实数 λ \lambda λ 的取值范围。
\\
解: g ( x ) = λ ( 2 x − 2 − x ) − ( 2 x ) 2 − ( 2 − x ) 2 + 4 g(x)=\lambda(2^x-2^{-x})-(2^x)^2-(2^{-x})^2+4 g(x)=λ(2x−2−x)−(2x)2−(2−x)2+4
设 2 x = t 2^x=t 2x=t 则 t ≥ 2 t\ge 2 t≥2
g ( x ) = λ ( t − 1 t ) − t 2 − 1 t 2 + 4 g(x)=\lambda(t-\frac{1}{t})-t^2-\frac{1}{t^2}+4 g(x)=λ(t−t1)−t2−t21+4
g ( x ) = − t 2 + 2 − 1 t 2 + λ ( t − 1 t + 2 ) g(x)=-t^2+2-\frac{1}{t^2}+\lambda(t-\frac{1}{t}+2) g(x)=−t2+2−t21+λ(t−t1+2)
令 m = t − 1 t m=t-\frac{1}{t} m=t−t1 则由双刀函数单调性可知 m ≥ 3 2 m\ge \frac{3}{2} m≥23
g ( x ) = − m 2 + λ m + 2 g(x)=-m^2+\lambda m+2 g(x)=−m2+λm+2 在 [ 3 2 , + ∞ ) [\frac{3}{2},+\infty) [23,+∞) 上有零点即可,考虑分参
λ = m − 2 m \lambda=m-\frac{2}{m} λ=m−m2 结合双刀函数单调性可知 λ ∈ [ 1 6 , + ∞ ) \lambda \in [\frac{1}{6},+\infty) λ∈[61,+∞)
- 对于函数 f ( x ) f(x) f(x),若 f ( x 0 ) = x 0 f(x_0)=x_0 f(x0)=x0,则称实数 x 0 x_0 x0 为函数 f ( x ) f(x) f(x) 的不动点。设函数 f ( x ) = log 2 ( 4 x − a ⋅ 2 x + 1 + 2 ) f(x)=\log_2(4^x-a\cdot 2^{x+1}+2) f(x)=log2(4x−a⋅2x+1+2), g ( x ) = ( 1 2 ) x g(x)=(\frac{1}{2})^x g(x)=(21)x
(1) 对于函数 f ( x ) f(x) f(x) 在区间 [ − 1 , 1 ] [-1,1] [−1,1] 上存在两个不动点,求实数 a a a 的取值范围;
(2) 若对于 ∀ x 1 , x 2 ∈ [ − 1 , 0 ] \forall x_1\text{, }x_2\in [-1,0] ∀x1, x2∈[−1,0],不等式 ∣ f ( x 1 ) − g ( x 2 ) ∣ ≤ 2 |f(x_1)-g(x_2)|\le 2 ∣f(x1)−g(x2)∣≤2 恒成立,求实数 a a a 的范围
(1)解:解 f ( x ) = x f(x)=x f(x)=x 等价于解 2 x = 2 2 x − 2 a ⋅ 2 x 2^x=2^{2x}-2a\cdot 2^x 2x=22x−2a⋅2x
令 t = 2 x t=2^x t=2x,则 t ∈ [ 1 2 , 2 ] t\in [\frac{1}{2},2] t∈[21,2],使得 ϕ ( t ) = t 2 − ( 2 a + 1 ) t + 2 = 0 \phi (t)=t^2-(2a+1)t+2=0 ϕ(t)=t2−(2a+1)t+2=0 有解即可
根分布:
{ ( 2 a + 1 ) 2 − 8 > 0 1 2 < 2 a + 1 2 < 2 ϕ ( 1 2 ) > 0 ϕ ( 2 ) > 0 \begin{cases}(2a+1)^2-8>0\\\frac{1}{2}<\frac{2a+1}{2}<2\\\phi (\frac{1}{2})>0\\\phi (2)>0\end{cases} ⎩ ⎨ ⎧(2a+1)2−8>021<22a+1<2ϕ(21)>0ϕ(2)>0
解得 a ∈ [ 2 − 1 2 , 1 ] a\in[\sqrt{2}-\frac{1}{2},1] a∈[2−21,1]
分参:
( 2 a + 1 ) t = t 2 + 2 (2a+1)t=t^2+2 (2a+1)t=t2+2
2 a + 1 = t + 2 t 2a+1=t+\frac{2}{t} 2a+1=t+t2 结合对勾函数图像可得 2 a + 1 ∈ [ 2 2 , 3 ] 2a+1\in[2\sqrt{2},3] 2a+1∈[22,3]
解得 a ∈ [ 2 − 1 2 , 1 ] a\in[\sqrt{2}-\frac{1}{2},1] a∈[2−21,1]
(2)解: ∣ f ( x 1 ) − g ( x 2 ) ∣ ≤ 2 ⇒ g ( x 2 ) − 2 ≤ f ( x 1 ) ≤ g ( x 2 ) + 2 |f(x_1)-g(x_2)|\le 2\Rightarrow g(x_2)-2\le f(x_1)\le g(x_2)+2 ∣f(x1)−g(x2)∣≤2⇒g(x2)−2≤f(x1)≤g(x2)+2
因为是恒成立问题,所以要使得== g ( x 2 ) m a x − 2 ≤ f ( x 1 ) ≤ g ( x 2 ) m i n + 2 g(x_2)_{max}-2\le f(x_1)\le g(x_2)_{min}+2 g(x2)max−2≤f(x1)≤g(x2)min+2==
易得 g ( x 2 ) m a x = 2 , g ( x ) m i n = 1 g(x_2)_{max}=2,g(x)_{min}=1 g(x2)max=2,g(x)min=1
故 f ( x ) ∈ [ 0 , 3 ] f(x)\in[0,3] f(x)∈[0,3]
令 t = 2 x t=2^x t=2x 则 t ∈ [ 1 2 , 1 ] t\in[\frac{1}{2},1] t∈[21,1]
1 ≤ t 2 − 2 a t + 2 ≤ 8 1\le t^2-2at+2\le 8 1≤t2−2at+2≤8
分参法得 a ∈ [ − 5 2 , 1 ] a\in [-\frac52,1] a∈[−25,1]
\\
定义域
- 已知函数 f ( x ) = log 1 2 ( x 2 − a x + a ) f(x)=\log_{\frac{1}{2}}(x^2-ax+a) f(x)=log21(x2−ax+a) 在区间 ( − ∞ , 2 ) (-\infty,\sqrt{2}) (−∞,2) 上是增函数,求实数 a a a 的取值范围。
\\
解:复合函数同增异减,故 x 2 − a x + a x^2-ax+a x2−ax+a 单调递减
a 2 ≥ 2 \frac{a}{2}\ge \sqrt{2} 2a≥2 得 a ≥ 2 2 a\ge 2\sqrt{2} a≥22
这还不够! 内函数最小值需要大于等于 0 0 0( 2 \sqrt2 2 取不到,可以正好等于 0 0 0)
( 2 ) 2 − 2 a + 1 ≥ 0 (\sqrt{2})^2-\sqrt{2}a+1\ge0 (2)2−2a+1≥0 得 a ≤ 2 2 + 2 a\le 2\sqrt{2}+2 a≤22+2
综上, a ∈ [ 2 2 , 4 2 + 2 ] a\in[2\sqrt2,4\sqrt2+2] a∈[22,42+2]
\\
- 已知函数 f ( x ) = log a ( 1 − a x ) ( a > 0 f(x)=\log_a(1-a^x)(a>0 f(x)=loga(1−ax)(a>0 且 a ≠ 1 ) a\neq1) a=1),解关于 x x x 的不等式 log a ( 1 − a x ) > f ( 1 ) \log_a(1-a^x)>f(1) loga(1−ax)>f(1)
\\
解:无脑分类即可,但特别坑的是,有了 f ( 1 ) f(1) f(1) 的存在说明定义域包含 1 1 1,故分类分到 a > 1 a>1 a>1 时无解
\\
- 已知 a > 0 a>0 a>0 且 a ≠ 1 a\neq1 a=1,并且关于 x x x 的方程 log a [ x + k 2 + k + 2 x − 2 ( k + 1 ) ] = log a ( 2 x − 1 ) \log_a[x+\frac{k^2+k+2}{x}-2(k+1)]=\log_a(\frac2x-1) loga[x+xk2+k+2−2(k+1)]=loga(x2−1) 仅有一个实数解,求 k k k 的范围。
\\
解:
x
+
k
2
+
k
+
2
x
−
2
(
k
+
1
)
=
2
x
−
1
(
x
−
k
−
1
)
(
x
−
k
)
=
0
x
1
=
k
+
1
x
2
=
k
x+\frac{k^2+k+2}{x}-2(k+1)=\frac{2}{x}-1\\ (x-k-1)(x-k)=0\\ x_1=k+1\\ x_2=k
x+xk2+k+2−2(k+1)=x2−1(x−k−1)(x−k)=0x1=k+1x2=k
由
2
x
−
1
>
0
\frac{2}{x}-1>0
x2−1>0 得
x
∈
(
0
,
2
)
x\in(0,2)
x∈(0,2),这两个解答只有一个满足。
1
°
x
=
k
1\degree x=k
1°x=k
{ 0 < k < 2 k + 1 ≥ 2 k + k 2 + k + 2 k − 2 ( k + 1 ) > 0 \begin{cases}0<k<2\\k+1\ge2\\k+\frac{k^2+k+2}{k}-2(k+1)>0\end{cases} ⎩ ⎨ ⎧0<k<2k+1≥2k+kk2+k+2−2(k+1)>0
无解。
2 ° x = k 2\degree x=k 2°x=k
{ 0 < k + 1 < 2 k ≤ 0 k + 1 + k 2 + k + 2 k + 1 − 2 ( k + 1 ) > 0 \begin{cases}0<k+1<2\\k\le0\\k+1+\frac{k^2+k+2}{k+1}-2(k+1)>0\end{cases} ⎩ ⎨ ⎧0<k+1<2k≤0k+1+k+1k2+k+2−2(k+1)>0
解得 k ∈ ( − 1 , 0 ] k\in(-1,0] k∈(−1,0]
综上, k ∈ ( − 1 , 0 ] k\in(-1,0] k∈(−1,0]。
- 已知函数 g ( x ) = log a ( x − 3 a ) g(x)=\log_a(x-3a) g(x)=loga(x−3a),其中 a > 0 a>0 a>0 且 a ≠ 1 a\neq1 a=1。若当 x ∈ [ a + 2 , a + 3 ] x\in[a+2,a+3] x∈[a+2,a+3] 时,恒有 ∣ g ( x ) + g ( x + 2 a ) ∣ ≤ 1 |g(x)+g(x+2a)|\le1 ∣g(x)+g(x+2a)∣≤1,求 a a a 的取值范围。
解:变形可得 ∣ log a ( x − a ) ( x − 3 a ) ∣ ≤ 1 |\log_a(x-a)(x-3a)|\le1 ∣loga(x−a)(x−3a)∣≤1
即 − 1 ≤ log a ( x − a ) ( x − 3 a ) ≤ 1 -1\le\log_a(x-a)(x-3a)\le1 −1≤loga(x−a)(x−3a)≤1,那么是否要分类讨论 a a a 的范围呢?分就错了!
由 g ( x ) g(x) g(x) 定义域得 x m i n = a + 2 − 3 a > 0 x_{min}=a+2-3a>0 xmin=a+2−3a>0 所以 a ∈ ( 0 , 1 ) a\in(0,1) a∈(0,1)
2 a < a + 2 2a<a+2 2a<a+2, ( x − a ) ( x − 3 a ) (x-a)(x-3a) (x−a)(x−3a) 在定义域上单调递增
− 1 ≤ log a ( x − a ) ( x − 3 a ) ≤ 1 ⇒ a ≤ ( x − a ) ( x − 3 a ) ≤ 1 a -1\le\log_a(x-a)(x-3a)\le1\Rightarrow a\le(x-a)(x-3a)\le\frac1a −1≤loga(x−a)(x−3a)≤1⇒a≤(x−a)(x−3a)≤a1
{ ( a + 2 − a ) ( a + 2 − 3 a ) ≥ a ( a + 3 − a ) ( a + 3 − 3 a ) ≤ 1 a \begin{cases}(a+2-a)(a+2-3a)\ge a\\(a+3-a)(a+3-3a)\le \frac1a\end{cases} {(a+2−a)(a+2−3a)≥a(a+3−a)(a+3−3a)≤a1
解得 a ∈ ( 0 , 9 − 57 12 ] a\in(0,\frac{9-\sqrt{57}}{12}] a∈(0,129−57]
\\
不等替换
- 已知 a > 0 a>0 a>0, b > 0 b>0 b>0,且 a 3 + b 3 + 2 a b = 4 a^3+b^3+2ab=4 a3+b3+2ab=4,求 a + b a+b a+b 的取值范围。
\\
解:出现
a
b
ab
ab 和
a
+
b
a+b
a+b,尝试用基本不等式将它们联系起来。
a
3
+
b
3
+
2
a
b
=
4
(
a
+
b
)
(
a
2
+
b
2
−
a
b
)
+
2
a
b
=
4
(
a
+
b
)
[
(
a
+
b
)
2
−
3
a
b
]
+
2
a
b
=
4
a^3+b^3+2ab=4\\ (a+b)(a^2+b^2-ab)+2ab=4\\ (a+b)[(a+b)^2-3ab]+2ab=4\\
a3+b3+2ab=4(a+b)(a2+b2−ab)+2ab=4(a+b)[(a+b)2−3ab]+2ab=4
令
t
=
a
+
b
t=a+b
t=a+b 可得
t
(
t
2
−
3
a
b
)
+
2
a
b
=
4
∴
a
b
=
4
−
t
3
2
−
3
t
∵
a
+
b
≥
2
a
b
∴
a
b
≤
(
a
+
b
)
2
4
∴
4
−
t
3
2
−
3
t
≤
t
2
4
t(t^2-3ab)+2ab=4\\ \therefore ab=\frac{4-t^3}{2-3t}\\ \because a+b\ge2\sqrt{ab}\\ \therefore ab\le \frac{(a+b)^2}{4}\\ \therefore \frac{4-t^3}{2-3t}\le \frac{t^2}{4}
t(t2−3ab)+2ab=4∴ab=2−3t4−t3∵a+b≥2ab∴ab≤4(a+b)2∴2−3t4−t3≤4t2
解这个不等式得到
t
∈
(
4
3
,
2
]
t\in(\sqrt[3]4,2]
t∈(34,2] 也即
a
+
b
a+b
a+b 的范围。
\\
- 已知 α + β − sin γ = 0 \alpha+\beta-\sin\gamma=0 α+β−sinγ=0,则 α + β − cos γ \sqrt{\alpha}+\sqrt{\beta}-\sqrt{\cos\gamma} α+β−cosγ 的最大值为___
\\
解:首先易得 α ≥ 0 , β ≥ 0 , α + β = cos γ ≥ 0 \alpha\ge 0,\beta\ge0,\alpha+\beta=\cos\gamma\ge0 α≥0,β≥0,α+β=cosγ≥0
( α + β ) 2 = α + β + 2 α β (\sqrt{\alpha}+\sqrt{\beta})^2=\alpha+\beta+2\sqrt{\alpha\beta} (α+β)2=α+β+2αβ
∵ α + β ≥ 2 α β \because \alpha+\beta\ge 2\sqrt{\alpha\beta} ∵α+β≥2αβ
∴ ( α + β ) 2 ≤ α + β + α + β = 2 ( α + β ) = 2 sin γ \therefore(\sqrt{\alpha}+\sqrt{\beta})^2\le \alpha+\beta+\alpha+\beta=2(\alpha+\beta)=2\sin\gamma ∴(α+β)2≤α+β+α+β=2(α+β)=2sinγ
∴ α + β ≤ 2 sin γ \therefore \sqrt{\alpha}+\sqrt{\beta}\le\sqrt{2\sin\gamma} ∴α+β≤2sinγ
故 α + β − cos γ ≤ 2 sin γ − cos γ \sqrt{\alpha}+\sqrt{\beta}-\sqrt{\cos\gamma}\le \sqrt{2\sin\gamma}-\sqrt{\cos\gamma} α+β−cosγ≤2sinγ−cosγ
在取值范围内,当 γ = π 2 , α = β = 1 2 \gamma=\frac{\pi}{2},\alpha=\beta=\frac12 γ=2π,α=β=21 时 ( α + β − cos γ ) m a x = ( 2 sin γ − cos γ ) m a x = 2 (\sqrt{\alpha}+\sqrt{\beta}-\sqrt{\cos\gamma})_{max}= (\sqrt{2\sin\gamma}-\sqrt{\cos\gamma})_{max}=\sqrt{2} (α+β−cosγ)max=(2sinγ−cosγ)max=2