必修一数学经验总结

经验汇总

PDF

尽力了,Typora的格式这里适配不了。欢迎查看格式优良的PDF

利用常数1

  1. 已知 a > 0 a>0 a>0 b > 0 b>0 b>0 2 a + 1 b = 1 \frac{2}{a}+\frac{1}{b}=1 a2+b1=1,求 a + b a+b a+b 最小值

\\

a + b = 1 ⋅ ( a + b ) = ( 2 a + 1 b ) ( a + b ) a+b=1\cdot(a+b)=(\frac{2}{a}+\frac{1}{b})(a+b) a+b=1(a+b)=(a2+b1)(a+b)

a + b = 2 + a b + 2 b a + 1 = 2 + a b + 2 b a a+b=2+\frac{a}{b}+\frac{2b}{a}+1=2+\frac{a}{b}+\frac{2b}{a} a+b=2+ba+a2b+1=2+ba+a2b

​ 由基本不等式得, ( a + b ) m i n = 3 + 2 2 (a+b)_{min}=3+2\sqrt{2} (a+b)min=3+22
\\
2. 已知 a > 0 a>0 a>0 b > 0 b>0 b>0 a + b = 1 a+b=1 a+b=1,求 3 a b + 1 a b \frac{3a}{b}+\frac{1}{ab} b3a+ab1 最小值

\\

( a + b ) 2 = 1 (a+b)^2=1 (a+b)2=1

3 a b + 1 a b = 3 a b + ( a + b ) 2 a b = 3 a b + a b + 2 + b a \frac{3a}{b}+\frac{1}{ab}=\frac{3a}{b}+\frac{(a+b)^2}{ab}=\frac{3a}{b}+\frac{a}{b}+2+\frac{b}{a} b3a+ab1=b3a+ab(a+b)2=b3a+ba+2+ab

3 a b + 1 a b = 4 a b + a b + 2 \frac{3a}{b}+\frac{1}{ab}=\frac{4a}{b}+\frac{a}{b}+2 b3a+ab1=b4a+ba+2

​ 由基本不等式得 ( 3 a b + 1 a b ) m i n = 6 (\frac{3a}{b}+\frac{1}{ab})_{min}=6 (b3a+ab1)min=6

\\

  1. 多选)已知函数 f ( x ) f(x) f(x) 的定义域是 ( 0 , ∞ ) (0,\infty) (0,) f ( x ) − f ( y ) = x y f(x)-f(y)=\frac{x}{y} f(x)f(y)=yx,当 x > 1 x>1 x>1 时, f ( x ) > 0 f(x)>0 f(x)>0,且 f ( 1 2 ) = − 1 f(\frac{1}{2})=-1 f(21)=1

​ A. f ( 1 ) = 0 f(1)=0 f(1)=0

​ B. 函数 f ( x ) f(x) f(x) ( 0 , + ∞ ) (0,+\infty) (0,+) 上单调递增

​ C. f ( 2 ) + f ( 1 2 ) + f ( 3 ) + f ( 1 3 ) + ... + f ( 2024 ) + f ( 1 2024 ) = 0 f(2)+f(\frac{1}{2})+f(3)+f(\frac{1}{3})+\text{...}+f(2024)+f(\frac{1}{2024})=0 f(2)+f(21)+f(3)+f(31)+...+f(2024)+f(20241)=0

​ D. 满足不等式 f ( x ) − f ( x − 1 ) ≥ 2 f(x)-f(x-1)\ge 2 f(x)f(x1)2 x x x 的取值范围是 ( 1 , 4 3 ] (1,\frac{4}{3}] (1,34]

\\

: A.选项: f ( x ) − f ( 1 ) = f ( x 1 ) = f ( x ) f(x)-f(1)=f(\frac{x}{1})=f(x) f(x)f(1)=f(1x)=f(x) f ( 1 ) = 0 f(1)=0 f(1)=0 A.正确

​ B. 要证明单调性,我们要利用好 “ 当 x > 1 x>1 x>1 时, f ( x ) > 0 f(x)>0 f(x)>0 ” 这个条件。

​ 观察到函数定义域大于零,题目条件又有商的形式,那很可能是作商法

​ 设 0 < x 1 < x 2 0<x_1<x_2 0<x1<x2 则有 f ( x 2 ) − f ( x 1 ) = f ( x 2 x 1 ) f(x_2)-f(x_1)=f(\frac{x_2}{x_1}) f(x2)f(x1)=f(x1x2)

​ 则 x 2 x 1 > 1 ⇒ f ( x 2 ) − f ( x 1 ) = f ( x 2 x 1 ) > 0 \frac{x_2}{x_1}>1\Rightarrow f(x_2)-f(x_1)=f(\frac{x_2}{x_1})>0 x1x2>1f(x2)f(x1)=f(x1x2)>0 f ( x ) f(x) f(x) 单调递增 B.错误

​ (要得到大于 1 1 1,就应该拿大的除以小的

​ C. 原式 = f ( 2 ) + f ( 1 ) − f ( 2 ) + f ( 3 ) + f ( 1 ) − f ( 3 ) + ... + f ( 2024 ) + 1 − f ( 2024 ) =f(2)+f(1)-f(2)+f(3)+f(1)-f(3)+\text{...}+f(2024)+1-f(2024) =f(2)+f(1)f(2)+f(3)+f(1)f(3)+...+f(2024)+1f(2024)

= 2023 f ( 1 ) = 0 =2023f(1)=0 =2023f(1)=0 C.正确

​ D. f ( x ) − f ( x − 1 ) ≥ 2 ⇒ f ( x x − 1 ) ≥ 2 f(x)-f(x-1)\ge 2\Rightarrow f(\frac{x}{x-1})\ge 2 f(x)f(x1)2f(x1x)2

抽象函数不等式考虑单调性,那我们就需要找到一个基准,利用 f ( 1 ) f(1) f(1) f ( 1 2 ) f(\frac{1}{2}) f(21) 的值可以求出 f ( 2 ) = 1 f(2)=1 f(2)=1

​ 观察可得 f ( 2 ) − f ( 1 2 ) = f ( 2 1 2 ) = f ( 4 ) = 2 f(2)-f(\frac{1}{2})=f(\frac{2}{\frac{1}{2}})=f(4)=2 f(2)f(21)=f(212)=f(4)=2

​ 那么 $ f(\frac{x}{x-1})\ge 2\Rightarrow \frac{x}{x-1}\ge 4$ 结合定义域解一下 x ∈ ( 1 , 4 3 ) x\in(1,\frac{4}{3}) x(1,34) D.正确

答案:ACD

\\

同构

同构+函数性质

  1. 2 a + log ⁡ 2 a = 4 b + 2 log ⁡ 4 b 2^a+\log_2a=4^b+2\log_4b 2a+log2a=4b+2log4b,则 a a a___ 2 b 2b 2b(比较大小)

\\

2 a + log ⁡ 2 a = 2 2 b + log ⁡ 2 b 2^a+\log_2a=2^{2b}+\log_2b 2a+log2a=22b+log2b 要比较大小要让左右尽可能同构且待比较元素为自变量,然后利用函数单调性求解,现在只缺 log ⁡ 2 2 b \log_22b log22b

​ 观察可得 log ⁡ 2 2 b = log ⁡ 2 b + log ⁡ 2 2 = log ⁡ 2 b + 1 \log_22b=\log_2b+\log_22=\log_2b+1 log22b=log2b+log22=log2b+1

2 a + log ⁡ 2 a = 2 2 b + log ⁡ 2 2 b − 1 ⇒ 2 a + log ⁡ 2 a < 2 2 b + log ⁡ 2 2 b 2^a+\log_2a=2^{2b}+\log_22b-1\Rightarrow 2^a+\log_2a<2^{2b}+\log_22b 2a+log2a=22b+log22b12a+log2a<22b+log22b

f ( x ) = 2 x + log ⁡ 2 x f(x)=2^x+\log_2x f(x)=2x+log2x 单调递增,故 a < 2 b a<2b a<2b

\\

  1. a a a b > 1 b>1 b>1 a ⋅ e a < b ⋅ ln ⁡ b a\cdot e^a<b\cdot\ln b aea<blnb,则 b b b___ e a e^a ea(比较大小)

\\
:仍然考虑使得左右两边同构,观察可得 a = ln ⁡ e a a=\ln e^a a=lnea

​ 故 e a ⋅ ln ⁡ ( e a ) < b ln ⁡ b e^a\cdot\ln(e^a)<b\ln b ealn(ea)<blnb

f ( x ) = x ⋅ ln ⁡ x f(x)=x\cdot\ln x f(x)=xlnx ( 1 , + ∞ ) (1,+\infty) (1,+) 上单调递增,故 b > e a b>e^a b>ea

\\

  1. ∃ x ∈ ( 1 , + ∞ ) \exist x\in(1,+\infty) x(1,+) a > 0 a>0 a>0 e x − x ≤ x a − a ln ⁡ x e^x-x\le x^a-a\ln x exxxaalnx,求 a a a 的最小值(不会求导可以保留 x x x ln ⁡ x \ln x lnx

\\

:仍然要构造同构,观察左边,可以把右边的 a ln ⁡ x a\ln x alnx 作为 x x x ,又发现 e ln ⁡ x a \large e^{\ln x^a} elnxa = e a ln ⁡ x =e^{a\ln x} =ealnx

​ 则 e x − x ≤ e a ln ⁡ x + a ln ⁡ x e^x-x\le e^{a\ln x}+a\ln x exxealnx+alnx,又 ∵ f ( x ) = e x − x \because f(x)=e^x-x f(x)=exx ( 1 , + ∞ ) (1,+\infty) (1,+) 上单调递增

​ 可得 x ≤ a ln ⁡ x x\le a\ln x xalnx,考虑分离参数,且这里是存在性问题 a ≥ ( x ln ⁡ x ) m i n a\ge(\frac{x}{\ln x})_{min} a(lnxx)min

​ 故 a m i n = ( x ln ⁡ x ) m i n a_{min}=(\frac{x}{\ln x})_{min} amin=(lnxx)min,利用导数相关知识可求出最小值为 e e e

\\

  1. 已知 c = 2 c=2 c=2 a = log ⁡ 5 12 + log ⁡ 121 25 a=\log_512+\log_{121}25 a=log512+log12125 5 a + 1 2 a = 1 3 b 5^a+12^a=13^b 5a+12a=13b,比较 a a a b b b c c c 的大小。

\\

a = log ⁡ 5 12 + log ⁡ 11 5 a=\log_512+\log_{11}5 a=log512+log115,根据换底公式得 a = lg ⁡ 12 lg ⁡ 5 + lg ⁡ 5 lg ⁡ 11 a=\frac{\lg12}{\lg5}+\frac{\lg5}{\lg11} a=lg5lg12+lg11lg5,结合基本不等式:
a = lg ⁡ 12 lg ⁡ 5 + lg ⁡ 5 lg ⁡ 11 ≥ 2 lg ⁡ 12 lg ⁡ 11 a ≥ 2 log ⁡ 11 12 > 2 1 a > 2 = c ∴ 1 3 b > 5 2 + 1 2 2 = 1 3 2 ⇒ b > 2 = c a=\frac{\lg12}{\lg5}+\frac{\lg5}{\lg11}\ge2\sqrt{\frac{\lg12}{\lg11}}\\ a\ge2\sqrt{\log_{11}12}>2\sqrt{1}\\ a>2=c\\ \therefore 13^b>5^2+12^2=13^2\Rightarrow b>2=c a=lg5lg12+lg11lg52lg11lg12 a2log1112 >21 a>2=c13b>52+122=132b>2=c
​ 现在考虑 a a a b b b 的大小,构造定义域为 ( 2 , + ∞ ) (2,+\infty) (2,+) 的函数 g ( x ) = 5 x + 1 2 x − 1 3 x g(x)=5^x+12^x-13^x g(x)=5x+12x13x,可以得到:
g ( x ) = 5 2 ⋅ 5 x − 2 + 1 2 2 ⋅ 1 2 x − 2 − 1 3 2 ⋅ 1 3 x − 2 < 5 2 ⋅ 12 x − 2 + 1 2 2 ⋅ 1 2 x − 2 − 1 3 2 ⋅ 1 3 x − 2 g ( x ) < ( 5 2 + 1 2 2 ) 1 2 x − 2 − 1 3 2 ⋅ 1 3 x − 2 = 169 ( 1 2 x − 1 3 x ) < 0 g ( x ) < 0 g(x)=5^2\cdot\color{red}{5}\color{black}{}^{x-2}+12^2\cdot12^{x-2}-13^2\cdot13^{x-2}<5^2\cdot\color{red}{12}\color{black}^{x-2}+12^2\cdot12^{x-2}-13^2\cdot13^{x-2}\\ g(x)<(5^2+12^2)12^{x-2}-13^2\cdot13^{x-2}=169(12^x-13^x)<0\\ g(x)<0 g(x)=525x2+12212x213213x2<5212x2+12212x213213x2g(x)<(52+122)12x213213x2=169(12x13x)<0g(x)<0
​ 由于 a a a g ( x ) g(x) g(x) 定义域内,可得:
5 a + 1 2 a − 1 3 a < 0 5 a + 1 2 a < 1 3 a 1 3 b < 1 3 a ∴ b < a 5^a+12^a-13^a<0\\ 5^a+12^a<13^a\\ 13^b<13^a\\ \therefore b<a 5a+12a13a<05a+12a<13a13b<13ab<a
​ 综上, c < b < a c<b<a c<b<a

\\

  1. 若函数 f ( x ) f(x) f(x) 的定义域是 R \R R,若对于任意的不相等的实数 x 1 x_1 x1 x 2 x_2 x2,恒有 f ( x 1 ) − f ( x 2 ) x 1 − x 2 < 1 \frac{f(x_1)-f(x_2)}{x_1-x_2}<1 x1x2f(x1)f(x2)<1,求关于 x x x 的不等式 f ( 2 x ) > f ( x + 1 ) + x − 1 f(2x)>f(x+1)+x-1 f(2x)>f(x+1)+x1 的解集。

\\

:不妨令 x 1 > x 2 x_1>x_2 x1>x2,则:
f ( x 1 ) − f ( x 2 ) < x 1 − x 2 f ( x 1 ) − x 1 < f ( x 2 ) − x 2 f(x_1)-f(x_2)<x_1-x_2\\ f(x_1)-x_1<f(x_2)-x_2 f(x1)f(x2)<x1x2f(x1)x1<f(x2)x2
​ 设 g ( x ) = f ( x ) − x g(x)=f(x)-x g(x)=f(x)x 由上述不等式可得 g ( x ) g(x) g(x) 单调递减。
f ( 2 x ) − 2 x > f ( x + 1 ) + x − 1 − 2 x f ( 2 x ) − 2 x > f ( x + 1 ) − x − 1 g ( 2 x ) > g ( x + 1 ) 2 x < x + 1 x ∈ ( − ∞ , 1 ) f(2x)-2x>f(x+1)+x-1-2x\\ f(2x)-2x>f(x+1)-x-1\\ g(2x)>g(x+1)\\ 2x<x+1\\ x\in(-\infty,1) f(2x)2x>f(x+1)+x12xf(2x)2x>f(x+1)x1g(2x)>g(x+1)2x<x+1x(,1)

\\

  1. 已知奇函数 f ( x ) f(x) f(x) 的定义域为 ( − ∞ , 0 ) ⋃ ( 0 , + ∞ ) (-\infty,0)\bigcup(0,+\infty) (,0)(0,+),满足对任意 x 1 , x 2 ∈ ( 0 , + ∞ ) x_1,x_2\in(0,+\infty) x1,x2(0,+),且 x 1 ≠ x 2 x_1\neq x_2 x1=x2,都有 x 1 f ( x 2 ) − x 2 f ( x 1 ) x 2 − x 1 < 0 \frac{x_1f(x_2)-x_2f(x_1)}{x_2-x_1}<0 x2x1x1f(x2)x2f(x1)<0,且 f ( 2 ) = 2 f(2)=2 f(2)=2,求关于 x x x 的不等式 f ( x ) > x f(x)>x f(x)>x 的解集。

\\

:不妨令 0 < x 1 < x 2 0<x_1<x_2 0<x1<x2,则:
x 1 f ( x 2 ) − x 2 f ( x 2 ) < 0 f ( x 2 ) x 2 < f ( x 1 ) x 1 x_1f(x_2)-x_2f(x_2)<0\\ \frac{f(x_2)}{x_2}<\frac{f(x_1)}{x_1}\\ x1f(x2)x2f(x2)<0x2f(x2)<x1f(x1)
​ 设 g ( x ) = f ( x ) x g(x)=\frac{f(x)}{x} g(x)=xf(x),则 g ( x ) g(x) g(x) ( 0 , + ∞ ) (0,+\infty) (0,+) 上单调递减, g ( − x ) = f ( − x ) − x = − f ( x ) − x = g ( x ) g(-x)=\frac{f(-x)}{-x}=\frac{-f(x)}{-x}=g(x) g(x)=xf(x)=xf(x)=g(x)

​ 故 g ( x ) g(x) g(x) 是偶函数,可得在 ( − ∞ , 0 ) (-\infty,0) (,0) 上单调递增。由于 f ( 2 ) = 2 f(2)=2 f(2)=2 所以 g ( 2 ) = 1 g(2)=1 g(2)=1。现在可以解不等式了:
1 ° x > 0 f ( x ) x > 1 g ( x ) > g ( 2 ) x < 2 1 ° x < 0 f ( x ) x < 1 g ( x ) < g ( 2 ) = g ( − 2 ) x < − 2 1\degree x>0\\ \frac{f(x)}{x}>1\\ g(x)>g(2)\\ x<2\\ 1\degree x<0\\ \frac{f(x)}{x}<1\\ g(x)<g(2)=g(-2)\\ x<-2\\ x>0xf(x)>1g(x)>g(2)x<2x<0xf(x)<1g(x)<g(2)=g(2)x<2
​ 综上, x ∈ ( − ∞ , 2 ) ⋃ ( 0 , 2 ) x\in(-\infty,2)\bigcup(0,2) x(,2)(0,2)

\\

同构+根存在

  1. 已知函数 f ( x ) = 4 x − 4 − x f(x)=4^x-4^{-x} f(x)=4x4x [ m , n ] [m,n] [m,n] 上的值域为 [ k ( 4 m − 1 ) , k ( 4 n − 1 ) ] [k(4^m-1),k(4^n-1)] [k(4m1),k(4n1)] k k k 的范围。

\\

:易证 f ( x ) f(x) f(x) 是奇函数且单调递增。

{ 4 m − 1 4 m = k ( 4 m − 1 ) 4 n − 1 4 n = k ( 4 n − 1 ) \begin{cases}4^m-\frac{1}{4^m}=k(4^m-1)\\4^n-\frac{1}{4^n}=k(4^n-1)\end{cases} {4m4m1=k(4m1)4n4n1=k(4n1)

​ 那么只要使关于 t t t 的方程 t − 1 t = k ( t − 1 ) t-\frac1t=k(t-1) tt1=k(t1)两个不同的正根

t 2 − 1 = k ( t 2 − t ) t^2-1=k(t^2-t) t21=k(t2t)

( t − 1 ) [ ( k − 1 ) t − 1 ] = 0 (t-1)[(k-1)t-1]=0 (t1)[(k1)t1]=0

t 1 = 1 , t 2 = 1 k − 1 t_1=1,t_2=\frac{1}{k-1} t1=1,t2=k11

{ 1 k − 1 > 0 1 k − 1 ≠ 1 \begin{cases}\frac{1}{k-1}>0\\\frac{1}{k-1}\neq1\end{cases} {k11>0k11=1

​ 解得 k ∈ ( 1 , 2 ) ⋃ ( 2 , + ∞ ) k\in(1,2)\bigcup(2,+\infty) k(1,2)(2,+)

\\

根分布与分参

  1. 设函数 f k ( x ) = 2 x + ( k − 1 ) ⋅ 2 − x ,  ( x ∈ R ,  k ∈ Z ) f_k(x)=2^x+(k-1)\cdot 2^{-x}\text{, }(x\in\R\text{, }k\in\Z) fk(x)=2x+(k1)2x(xRkZ)。设函数 g ( x ) = λ f 0 ( x ) − f 2 ( 2 x ) + 4 g(x)=\lambda f_0(x)-f_2(2x)+4 g(x)=λf0(x)f2(2x)+4,若 g ( x ) g(x) g(x) x ∈ [ 1 , + ∞ ) x\in[1,+\infty) x[1,+) 有零点,求实数 λ \lambda λ 的取值范围。

\\

g ( x ) = λ ( 2 x − 2 − x ) − ( 2 x ) 2 − ( 2 − x ) 2 + 4 g(x)=\lambda(2^x-2^{-x})-(2^x)^2-(2^{-x})^2+4 g(x)=λ(2x2x)(2x)2(2x)2+4

​ 设 2 x = t 2^x=t 2x=t t ≥ 2 t\ge 2 t2

g ( x ) = λ ( t − 1 t ) − t 2 − 1 t 2 + 4 g(x)=\lambda(t-\frac{1}{t})-t^2-\frac{1}{t^2}+4 g(x)=λ(tt1)t2t21+4

g ( x ) = − t 2 + 2 − 1 t 2 + λ ( t − 1 t + 2 ) g(x)=-t^2+2-\frac{1}{t^2}+\lambda(t-\frac{1}{t}+2) g(x)=t2+2t21+λ(tt1+2)

​ 令 m = t − 1 t m=t-\frac{1}{t} m=tt1 则由双刀函数单调性可知 m ≥ 3 2 m\ge \frac{3}{2} m23

g ( x ) = − m 2 + λ m + 2 g(x)=-m^2+\lambda m+2 g(x)=m2+λm+2 [ 3 2 , + ∞ ) [\frac{3}{2},+\infty) [23,+) 上有零点即可,考虑分参

λ = m − 2 m \lambda=m-\frac{2}{m} λ=mm2 结合双刀函数单调性可知 λ ∈ [ 1 6 , + ∞ ) \lambda \in [\frac{1}{6},+\infty) λ[61,+)

  1. 对于函数 f ( x ) f(x) f(x),若 f ( x 0 ) = x 0 f(x_0)=x_0 f(x0)=x0,则称实数 x 0 x_0 x0 为函数 f ( x ) f(x) f(x) 的不动点。设函数 f ( x ) = log ⁡ 2 ( 4 x − a ⋅ 2 x + 1 + 2 ) f(x)=\log_2(4^x-a\cdot 2^{x+1}+2) f(x)=log2(4xa2x+1+2) g ( x ) = ( 1 2 ) x g(x)=(\frac{1}{2})^x g(x)=(21)x

​ (1) 对于函数 f ( x ) f(x) f(x) 在区间 [ − 1 , 1 ] [-1,1] [1,1] 上存在两个不动点,求实数 a a a 的取值范围;

​ (2) 若对于 ∀ x 1 ,  x 2 ∈ [ − 1 , 0 ] \forall x_1\text{, }x_2\in [-1,0] x1x2[1,0],不等式 ∣ f ( x 1 ) − g ( x 2 ) ∣ ≤ 2 |f(x_1)-g(x_2)|\le 2 f(x1)g(x2)2 恒成立,求实数 a a a 的范围

​ (1):解 f ( x ) = x f(x)=x f(x)=x 等价于解 2 x = 2 2 x − 2 a ⋅ 2 x 2^x=2^{2x}-2a\cdot 2^x 2x=22x2a2x

​ 令 t = 2 x t=2^x t=2x,则 t ∈ [ 1 2 , 2 ] t\in [\frac{1}{2},2] t[21,2],使得 ϕ ( t ) = t 2 − ( 2 a + 1 ) t + 2 = 0 \phi (t)=t^2-(2a+1)t+2=0 ϕ(t)=t2(2a+1)t+2=0 有解即可

根分布

{ ( 2 a + 1 ) 2 − 8 > 0 1 2 < 2 a + 1 2 < 2 ϕ ( 1 2 ) > 0 ϕ ( 2 ) > 0 \begin{cases}(2a+1)^2-8>0\\\frac{1}{2}<\frac{2a+1}{2}<2\\\phi (\frac{1}{2})>0\\\phi (2)>0\end{cases} (2a+1)28>021<22a+1<2ϕ(21)>0ϕ(2)>0

​ 解得 a ∈ [ 2 − 1 2 , 1 ] a\in[\sqrt{2}-\frac{1}{2},1] a[2 21,1]

分参

( 2 a + 1 ) t = t 2 + 2 (2a+1)t=t^2+2 (2a+1)t=t2+2

2 a + 1 = t + 2 t 2a+1=t+\frac{2}{t} 2a+1=t+t2 结合对勾函数图像可得 2 a + 1 ∈ [ 2 2 , 3 ] 2a+1\in[2\sqrt{2},3] 2a+1[22 ,3]

​ 解得 a ∈ [ 2 − 1 2 , 1 ] a\in[\sqrt{2}-\frac{1}{2},1] a[2 21,1]

​ (2) ∣ f ( x 1 ) − g ( x 2 ) ∣ ≤ 2 ⇒ g ( x 2 ) − 2 ≤ f ( x 1 ) ≤ g ( x 2 ) + 2 |f(x_1)-g(x_2)|\le 2\Rightarrow g(x_2)-2\le f(x_1)\le g(x_2)+2 f(x1)g(x2)2g(x2)2f(x1)g(x2)+2

​ 因为是恒成立问题,所以要使得== g ( x 2 ) m a x − 2 ≤ f ( x 1 ) ≤ g ( x 2 ) m i n + 2 g(x_2)_{max}-2\le f(x_1)\le g(x_2)_{min}+2 g(x2)max2f(x1)g(x2)min+2==

​ 易得 g ( x 2 ) m a x = 2 , g ( x ) m i n = 1 g(x_2)_{max}=2,g(x)_{min}=1 g(x2)max=2,g(x)min=1

​ 故 f ( x ) ∈ [ 0 , 3 ] f(x)\in[0,3] f(x)[0,3]

​ 令 t = 2 x t=2^x t=2x t ∈ [ 1 2 , 1 ] t\in[\frac{1}{2},1] t[21,1]

1 ≤ t 2 − 2 a t + 2 ≤ 8 1\le t^2-2at+2\le 8 1t22at+28

​ 分参法得 a ∈ [ − 5 2 , 1 ] a\in [-\frac52,1] a[25,1]

\\

定义域

  1. 已知函数 f ( x ) = log ⁡ 1 2 ( x 2 − a x + a ) f(x)=\log_{\frac{1}{2}}(x^2-ax+a) f(x)=log21(x2ax+a) 在区间 ( − ∞ , 2 ) (-\infty,\sqrt{2}) (,2 ) 上是增函数,求实数 a a a 的取值范围。

\\

:复合函数同增异减,故 x 2 − a x + a x^2-ax+a x2ax+a 单调递减

a 2 ≥ 2 \frac{a}{2}\ge \sqrt{2} 2a2 a ≥ 2 2 a\ge 2\sqrt{2} a22

这还不够! 内函数最小值需要大于等于 0 0 0 2 \sqrt2 2 取不到,可以正好等于 0 0 0

( 2 ) 2 − 2 a + 1 ≥ 0 (\sqrt{2})^2-\sqrt{2}a+1\ge0 (2 )22 a+10 a ≤ 2 2 + 2 a\le 2\sqrt{2}+2 a22 +2

​ 综上, a ∈ [ 2 2 , 4 2 + 2 ] a\in[2\sqrt2,4\sqrt2+2] a[22 ,42 +2]

\\

  1. 已知函数 f ( x ) = log ⁡ a ( 1 − a x ) ( a > 0 f(x)=\log_a(1-a^x)(a>0 f(x)=loga(1ax)(a>0 a ≠ 1 ) a\neq1) a=1),解关于 x x x 的不等式 log ⁡ a ( 1 − a x ) > f ( 1 ) \log_a(1-a^x)>f(1) loga(1ax)>f(1)


\\

:无脑分类即可,但特别坑的是,有了 f ( 1 ) f(1) f(1) 的存在说明定义域包含 1 1 1,故分类分到 a > 1 a>1 a>1无解

\\

  1. 已知 a > 0 a>0 a>0 a ≠ 1 a\neq1 a=1,并且关于 x x x 的方程 log ⁡ a [ x + k 2 + k + 2 x − 2 ( k + 1 ) ] = log ⁡ a ( 2 x − 1 ) \log_a[x+\frac{k^2+k+2}{x}-2(k+1)]=\log_a(\frac2x-1) loga[x+xk2+k+22(k+1)]=loga(x21) 仅有一个实数解,求 k k k 的范围。

\\

x + k 2 + k + 2 x − 2 ( k + 1 ) = 2 x − 1 ( x − k − 1 ) ( x − k ) = 0 x 1 = k + 1 x 2 = k x+\frac{k^2+k+2}{x}-2(k+1)=\frac{2}{x}-1\\ (x-k-1)(x-k)=0\\ x_1=k+1\\ x_2=k x+xk2+k+22(k+1)=x21(xk1)(xk)=0x1=k+1x2=k
​ 由 2 x − 1 > 0 \frac{2}{x}-1>0 x21>0 x ∈ ( 0 , 2 ) x\in(0,2) x(0,2),这两个解答只有一个满足。
1 ° x = k 1\degree x=k x=k

{ 0 < k < 2 k + 1 ≥ 2 k + k 2 + k + 2 k − 2 ( k + 1 ) > 0 \begin{cases}0<k<2\\k+1\ge2\\k+\frac{k^2+k+2}{k}-2(k+1)>0\end{cases} 0<k<2k+12k+kk2+k+22(k+1)>0

​ 无解。

2 ° x = k 2\degree x=k x=k

{ 0 < k + 1 < 2 k ≤ 0 k + 1 + k 2 + k + 2 k + 1 − 2 ( k + 1 ) > 0 \begin{cases}0<k+1<2\\k\le0\\k+1+\frac{k^2+k+2}{k+1}-2(k+1)>0\end{cases} 0<k+1<2k0k+1+k+1k2+k+22(k+1)>0

​ 解得 k ∈ ( − 1 , 0 ] k\in(-1,0] k(1,0]

​ 综上, k ∈ ( − 1 , 0 ] k\in(-1,0] k(1,0]

  1. 已知函数 g ( x ) = log ⁡ a ( x − 3 a ) g(x)=\log_a(x-3a) g(x)=loga(x3a),其中 a > 0 a>0 a>0 a ≠ 1 a\neq1 a=1。若当 x ∈ [ a + 2 , a + 3 ] x\in[a+2,a+3] x[a+2,a+3] 时,恒有 ∣ g ( x ) + g ( x + 2 a ) ∣ ≤ 1 |g(x)+g(x+2a)|\le1 g(x)+g(x+2a)1,求 a a a 的取值范围。

:变形可得 ∣ log ⁡ a ( x − a ) ( x − 3 a ) ∣ ≤ 1 |\log_a(x-a)(x-3a)|\le1 loga(xa)(x3a)1

​ 即 − 1 ≤ log ⁡ a ( x − a ) ( x − 3 a ) ≤ 1 -1\le\log_a(x-a)(x-3a)\le1 1loga(xa)(x3a)1,那么是否要分类讨论 a a a 的范围呢?分就错了!

​ 由 g ( x ) g(x) g(x) 定义域得 x m i n = a + 2 − 3 a > 0 x_{min}=a+2-3a>0 xmin=a+23a>0 所以 a ∈ ( 0 , 1 ) a\in(0,1) a(0,1)

2 a < a + 2 2a<a+2 2a<a+2 ( x − a ) ( x − 3 a ) (x-a)(x-3a) (xa)(x3a) 在定义域上单调递增

− 1 ≤ log ⁡ a ( x − a ) ( x − 3 a ) ≤ 1 ⇒ a ≤ ( x − a ) ( x − 3 a ) ≤ 1 a -1\le\log_a(x-a)(x-3a)\le1\Rightarrow a\le(x-a)(x-3a)\le\frac1a 1loga(xa)(x3a)1a(xa)(x3a)a1

{ ( a + 2 − a ) ( a + 2 − 3 a ) ≥ a ( a + 3 − a ) ( a + 3 − 3 a ) ≤ 1 a \begin{cases}(a+2-a)(a+2-3a)\ge a\\(a+3-a)(a+3-3a)\le \frac1a\end{cases} {(a+2a)(a+23a)a(a+3a)(a+33a)a1

​ 解得 a ∈ ( 0 , 9 − 57 12 ] a\in(0,\frac{9-\sqrt{57}}{12}] a(0,12957 ]

\\

不等替换

  1. 已知 a > 0 a>0 a>0 b > 0 b>0 b>0,且 a 3 + b 3 + 2 a b = 4 a^3+b^3+2ab=4 a3+b3+2ab=4,求 a + b a+b a+b 的取值范围。

\\
:出现 a b ab ab a + b a+b a+b,尝试用基本不等式将它们联系起来。
a 3 + b 3 + 2 a b = 4 ( a + b ) ( a 2 + b 2 − a b ) + 2 a b = 4 ( a + b ) [ ( a + b ) 2 − 3 a b ] + 2 a b = 4 a^3+b^3+2ab=4\\ (a+b)(a^2+b^2-ab)+2ab=4\\ (a+b)[(a+b)^2-3ab]+2ab=4\\ a3+b3+2ab=4(a+b)(a2+b2ab)+2ab=4(a+b)[(a+b)23ab]+2ab=4
​ 令 t = a + b t=a+b t=a+b 可得
t ( t 2 − 3 a b ) + 2 a b = 4 ∴ a b = 4 − t 3 2 − 3 t ∵ a + b ≥ 2 a b ∴ a b ≤ ( a + b ) 2 4 ∴ 4 − t 3 2 − 3 t ≤ t 2 4 t(t^2-3ab)+2ab=4\\ \therefore ab=\frac{4-t^3}{2-3t}\\ \because a+b\ge2\sqrt{ab}\\ \therefore ab\le \frac{(a+b)^2}{4}\\ \therefore \frac{4-t^3}{2-3t}\le \frac{t^2}{4} t(t23ab)+2ab=4ab=23t4t3a+b2ab ab4(a+b)223t4t34t2
​ 解这个不等式得到 t ∈ ( 4 3 , 2 ] t\in(\sqrt[3]4,2] t(34 ,2] 也即 a + b a+b a+b 的范围。

\\

  1. 已知 α + β − sin ⁡ γ = 0 \alpha+\beta-\sin\gamma=0 α+βsinγ=0,则 α + β − cos ⁡ γ \sqrt{\alpha}+\sqrt{\beta}-\sqrt{\cos\gamma} α +β cosγ 的最大值为___

\\

:首先易得 α ≥ 0 , β ≥ 0 , α + β = cos ⁡ γ ≥ 0 \alpha\ge 0,\beta\ge0,\alpha+\beta=\cos\gamma\ge0 α0,β0,α+β=cosγ0

( α + β ) 2 = α + β + 2 α β (\sqrt{\alpha}+\sqrt{\beta})^2=\alpha+\beta+2\sqrt{\alpha\beta} (α +β )2=α+β+2αβ

∵ α + β ≥ 2 α β \because \alpha+\beta\ge 2\sqrt{\alpha\beta} α+β2αβ

∴ ( α + β ) 2 ≤ α + β + α + β = 2 ( α + β ) = 2 sin ⁡ γ \therefore(\sqrt{\alpha}+\sqrt{\beta})^2\le \alpha+\beta+\alpha+\beta=2(\alpha+\beta)=2\sin\gamma (α +β )2α+β+α+β=2(α+β)=2sinγ

∴ α + β ≤ 2 sin ⁡ γ \therefore \sqrt{\alpha}+\sqrt{\beta}\le\sqrt{2\sin\gamma} α +β 2sinγ

​ 故 α + β − cos ⁡ γ ≤ 2 sin ⁡ γ − cos ⁡ γ \sqrt{\alpha}+\sqrt{\beta}-\sqrt{\cos\gamma}\le \sqrt{2\sin\gamma}-\sqrt{\cos\gamma} α +β cosγ 2sinγ cosγ

​ 在取值范围内,当 γ = π 2 , α = β = 1 2 \gamma=\frac{\pi}{2},\alpha=\beta=\frac12 γ=2π,α=β=21 ( α + β − cos ⁡ γ ) m a x = ( 2 sin ⁡ γ − cos ⁡ γ ) m a x = 2 (\sqrt{\alpha}+\sqrt{\beta}-\sqrt{\cos\gamma})_{max}= (\sqrt{2\sin\gamma}-\sqrt{\cos\gamma})_{max}=\sqrt{2} (α +β cosγ )max=(2sinγ cosγ )max=2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值