极限的定义与求解(微积分前置知识)

说明

关于格式:Typora格式这里不支持,欢迎查看PDF版本

参考资料:《普林斯顿微积分读本(修订版)》,章节编排符合原著格式。

第3章 极限导论

3.1~4

极限定义 lim ⁡ x → a f ( x ) = L \lim\limits_{x\to a} f(x)=L xalimf(x)=L 表示, ∀ ω > 0 \forall \omega>0 ω>0 ∃ δ > 0 \exist \delta>0 δ>0 使得 ∀ x \forall x x 满足 0 < ∣ x − a ∣ < δ 0<|x-a|<\delta 0<xa<δ,有 ∣ f ( x ) − L ∣ < ω |f(x)-L|<\omega f(x)L<ω

左极限右极限定义:参考极限的定义,右极限只考虑 x ∈ ( a , a + δ ) x\in(a,a+\delta) x(a,a+δ);左极限只考虑 x ∈ ( a − δ , a ) x\in(a-\delta,a) x(aδ,a)

垂直渐近线:” f f f x = a x=a x=a 处有一条垂直渐近线“ 说的是, lim ⁡ x → a + f ( x ) \lim\limits_{x\to a^+} f(x) xa+limf(x) lim ⁡ x → a − f ( x ) \lim\limits_{x\to a^-} f(x) xalimf(x) 中至少有一个极限是 ∞ \infty − ∞ -\infty

水平渐近线:” f f f y = L y=L y=L 处有一条右侧水平渐近线“ 意味着 lim ⁡ x → ∞ f ( x ) = L \lim\limits_{x\to \infty} f(x)=L xlimf(x)=L

​ ” f f f y = M y=M y=M 处有一条左侧水平渐近线“ 意味着 lim ⁡ x → − ∞ f ( x ) = L \lim\limits_{x\to -\infty} f(x)=L xlimf(x)=L

3.5 关于渐近线的两个常见误解

纠正:

  1. 一个函数不一定要在左右两边具有相同的水平渐近线水平渐近线数量**不超过 2 2 2 **,垂直渐近线数量不限。
  2. 一个函数可能和它的渐近线相交。如 f ( x ) = sin ⁡ ( x ) x f(x)=\frac{\sin(x)}x f(x)=xsin(x)

3.6 三明治定理

三明治定理(又称作夹逼定理):如果对于所有 a a a 附近的 x x x 都有 g ( x ) ≤ f ( x ) ≤ h ( x ) g(x)\le f(x)\le h(x) g(x)f(x)h(x),且 lim ⁡ x → a g ( x ) = lim ⁡ x → a h ( x ) = L \lim\limits_{x\to a}g(x)=\lim\limits_{x\to a}h(x)=L xalimg(x)=xalimh(x)=L,则 lim ⁡ x → a f ( x ) = L \lim\limits_{x\to a}f(x)=L xalimf(x)=L

​ 例1:求 lim ⁡ x → 0 + x sin ⁡ ( 1 x ) \lim\limits_{x\to 0^+}x\sin(\frac{1}{x}) x0+limxsin(x1)

∵ − 1 ≤ sin ⁡ ( 1 x ) ≤ 1 \because -1\le \sin(\frac1x)\le1 1sin(x1)1

∴ x > 0 \therefore x>0 x>0 − x ≤ x sin ⁡ ( 1 x ) ≤ x -x\le x\sin(\frac1x)\le x xxsin(x1)x

​ 设 f ( x ) = x f(x)=x f(x)=x g ( x ) = − x g(x)=-x g(x)=x h ( x ) = x sin ⁡ ( 1 x ) h(x)=x\sin(\frac1x) h(x)=xsin(x1)

∵ lim ⁡ x → 0 + f ( x ) = lim ⁡ x → 0 + g ( x ) = 0 \because \lim\limits_{x\to 0^+}f(x)=\lim\limits_{x\to 0^+}g(x)=0 x0+limf(x)=x0+limg(x)=0 f ( x ) ≤ h ( x ) ≤ g ( x ) f(x)\le h(x)\le g(x) f(x)h(x)g(x)

∴ lim ⁡ x → 0 + h ( x ) = 0 \therefore \lim\limits_{x\to 0^+}h(x)=0 x0+limh(x)=0 lim ⁡ x → 0 + x sin ⁡ ( 1 x ) = 0 \lim\limits_{x\to 0^+}x\sin(\frac{1}{x})=0 x0+limxsin(x1)=0

​ 例2:求 lim ⁡ x → + ∞ sin ⁡ ( x ) x \lim\limits_{x\to +\infty}\frac{\sin(x)}{x} x+limxsin(x)

∵ − 1 ≤ sin ⁡ ( x ) ≤ 1 \because -1\le\sin(x)\le 1 1sin(x)1 x > 0 x>0 x>0

∴ − 1 x ≤ sin ⁡ ( x ) x ≤ 1 x \therefore -\frac{1}{x}\le\frac{\sin(x)}{x}\le \frac1x x1xsin(x)x1

​ 又 ∵ lim ⁡ x → + ∞ − 1 x = lim ⁡ x → + ∞ 1 x = 0 \because \lim\limits_{x\to +\infty}-\frac1x=\lim\limits_{x\to +\infty}\frac1x=0 x+limx1=x+limx1=0

∴ lim ⁡ x → + ∞ sin ⁡ ( x ) x = 0 \therefore \lim\limits_{x\to +\infty}\frac{\sin(x)}{x}=0 x+limxsin(x)=0

第4章 求解多项式的极限问题

4.1 x → a x\to a xa 时的有理函数的极限

lim ⁡ x → a p ( x ) q ( x ) \lim\limits_{x\to a}\frac{p(x)}{q(x)} xalimq(x)p(x),其中 p ( x ) p(x) p(x) q ( x ) q(x) q(x) 都是多项式(有理),并且 a a a 是一个有限的数。

尝试用 a a a 的值替换 x x x 的值

  1. 如果分母不为 0 0 0 ,极限值就是替换后所得的值
  2. 如果分母分子都为 0 0 0(分子分母都含 ( x − a ) (x-a) (xa) 项),借助因式分解取出公因子再带入 a a a 的值。

​ 例:求 lim ⁡ x → 3 x 3 − 27 x 4 − 5 x 3 + 6 x 2 \lim\limits_{x\to3}\frac{x^3-27}{x^4-5x^3+6x^2} x3limx45x3+6x2x327

lim ⁡ x → 3 x 3 − 27 x 4 − 5 x 3 + 6 x 2 = lim ⁡ x → 3 ( x − 3 ) ( x 2 + 3 x + 9 ) x 2 ( x − 3 ) ( x − 2 ) = lim ⁡ x → 3 x 2 + 3 x + 9 x 2 ( x − 2 ) \lim\limits_{x\to3}\frac{x^3-27}{x^4-5x^3+6x^2}=\lim\limits_{x\to3}\frac{(x-3)(x^2+3x+9)}{x^2(x-3)(x-2)}=\lim\limits_{x\to3}\frac{x^2+3x+9}{x^2(x-2)} x3limx45x3+6x2x327=x3limx2(x3)(x2)(x3)(x2+3x+9)=x3limx2(x2)x2+3x+9

​ 将 3 3 3 带入 x 2 + 3 x + 9 x 2 ( x − 2 ) \frac{x^2+3x+9}{x^2(x-2)} x2(x2)x2+3x+9 3 3 3,故 lim ⁡ x → 3 x 3 − 27 x 4 − 5 x 3 + 6 x 2 = 3 \lim\limits_{x\to3}\frac{x^3-27}{x^4-5x^3+6x^2}=3 x3limx45x3+6x2x327=3

  1. 如果分母为 0 0 0 且分子不为 0 0 0(分母含 ( x − a ) (x-a) (xa) 项而分子不含),在 a a a 左右两侧稍微移动 x x x,保持分子符号不变分母仅影响 ( x − a ) (x-a) (xa),看分母符号,分别求得左右极限

​ 例1:求 lim ⁡ x → 1 2 x 2 − x − 6 x ( x − 1 ) 3 \lim\limits_{x\to 1}\frac{2x^2-x-6}{x(x-1)^3} x1limx(x1)32x2x6

​ 将 x = 1 x=1 x=1 带入发现原式 = − 5 0 =-\frac{5}{0} =05

x > 1 x>1 x>1 ( − ) ( + ) ⋅ ( + ) = ( − ) \frac{(-)}{(+)\cdot (+)}=(-) (+)(+)()=() lim ⁡ x → 1 + 2 x 2 − x − 6 x ( x − 1 ) 3 = − ∞ \lim\limits_{x\to 1^+}\frac{2x^2-x-6}{x(x-1)^3}=-\infty x1+limx(x1)32x2x6=

x < 1 x<1 x<1 ( − ) ( + ) ⋅ ( − ) = ( + ) \frac{(-)}{(+)\cdot (-)}=(+) (+)()()=(+) lim ⁡ x → 1 − 2 x 2 − x − 6 x ( x − 1 ) 3 = + ∞ \lim\limits_{x\to 1^-}\frac{2x^2-x-6}{x(x-1)^3}=+\infty x1limx(x1)32x2x6=+

​ 故双侧极限 lim ⁡ x → 1 2 x 2 − x − 6 x ( x − 1 ) 3 \lim\limits_{x\to 1}\frac{2x^2-x-6}{x(x-1)^3} x1limx(x1)32x2x6 不存在

​ 例2:求 lim ⁡ x → 1 2 x 2 − x − 6 x ( x − 1 ) 2 \lim\limits_{x\to 1}\frac{2x^2-x-6}{x(x-1)^2} x1limx(x1)22x2x6

​ 将 x = 1 x=1 x=1 带入发现原式 = − 5 0 =-\frac{5}{0} =05

x > 1 x>1 x>1 ( − ) ( + ) ⋅ ( + ) = ( − ) \frac{(-)}{(+)\cdot (+)}=(-) (+)(+)()=() lim ⁡ x → 1 + 2 x 2 − x − 6 x ( x − 1 ) 3 = − ∞ \lim\limits_{x\to 1^+}\frac{2x^2-x-6}{x(x-1)^3}=-\infty x1+limx(x1)32x2x6=

x < 1 x<1 x<1 ( − ) ( + ) ⋅ ( + ) = ( − ) \frac{(-)}{(+)\cdot (+)}=(-) (+)(+)()=() lim ⁡ x → 1 − 2 x 2 − x − 6 x ( x − 1 ) 3 = − ∞ \lim\limits_{x\to 1^-}\frac{2x^2-x-6}{x(x-1)^3}=-\infty x1limx(x1)32x2x6=

​ 故 lim ⁡ x → 1 2 x 2 − x − 6 x ( x − 1 ) 3 = − ∞ \lim\limits_{x\to 1}\frac{2x^2-x-6}{x(x-1)^3}=-\infty x1limx(x1)32x2x6=

4.2 x → a x\to a xa 时的平方根的极限

尝试用 a a a 的值代替 x x x,如果分子分母不都为 0 0 0,仿照上面的求法;否则使用分母或分子有理化

​ 例:求 lim ⁡ x → 5 x 2 − 9 − 4 x − 5 \lim\limits_{x\to 5}\frac{\sqrt{x^2-9}-4}{x-5} x5limx5x29 4

lim ⁡ x → 5 x 2 − 9 − 4 x − 5 = lim ⁡ x → 5 x 2 − 9 − 4 x − 5 × x 2 − 9 + 4 x 2 − 9 + 4 = lim ⁡ x → 5 x 2 − 25 ( x − 5 ) ( x 2 − 9 + 4 ) = lim ⁡ x → 5 x + 5 x 2 − 9 + 4 = 5 4 \lim\limits_{x\to 5}\frac{\sqrt{x^2-9}-4}{x-5}=\lim\limits_{x\to 5}\frac{\sqrt{x^2-9}-4}{x-5}\times \frac{\sqrt{x^2-9}+4}{\sqrt{x^2-9}+4}=\lim\limits_{x\to 5}\frac{x^2-25}{(x-5)(\sqrt{x^2-9}+4)}=\lim\limits_{x\to 5}\frac{x+5}{\sqrt{x^2-9}+4}=\frac54 x5limx5x29 4=x5limx5x29 4×x29 +4x29 +4=x5lim(x5)(x29 +4)x225=x5limx29 +4x+5=45

4.3 x → + ∞ x\to +\infty x+ 时的有理函数的极限

用符号表示,即求 lim ⁡ x → + ∞ p ( x ) q ( x ) \lim\limits_{x\to +\infty}\frac{p(x)}{q(x)} x+limq(x)p(x),其中 p ( x ) p(x) p(x) q ( x ) q(x) q(x) 都是多项式(有理)。

多项式有一个性质:当 x x x 很大时,首项决定一切。例如 p ( x ) = x 3 − 1000 x 2 + 5 x + 7 p(x)=x^3-1000x^2+5x+7 p(x)=x31000x2+5x+7 的首项是 p L ( x ) = x 3 p_L(x)=x^3 pL(x)=x3,则有 lim ⁡ x → + ∞ p ( x ) p L ( x ) = 1 \lim\limits_{x\to +\infty}\frac{p(x)}{p_L(x)}=1 x+limpL(x)p(x)=1

这里有一条定理 ∀ n ∈ ( 0 , + ∞ ) \forall n\in(0,+\infty) n(0,+),且 C C C 是常数,就有 lim ⁡ x → + ∞ C x n = 0 \lim\limits_{x\to+\infty}\frac{C}{x^n}=0 x+limxnC=0

求有理函数的极限,就是上下每个多项式的首项的商的极限

​ 例1:求 lim ⁡ x → + ∞ x − 8 x 4 7 x 4 + 5 x 3 + 200 x 2 − 6 \lim\limits_{x\to +\infty}\frac{x-8x^4}{7x^4+5x^3+200x^2-6} x+lim7x4+5x3+200x26x8x4

lim ⁡ x → + ∞ x − 8 x 4 7 x 4 + 5 x 3 + 200 x 2 − 6 = lim ⁡ x → + ∞ − 8 x 4 7 x 4 = − 8 7 \lim\limits_{x\to +\infty}\frac{x-8x^4}{7x^4+5x^3+200x^2-6}=\lim\limits_{x\to +\infty}\frac{-8x^4}{7x^4}=-\frac{8}{7} x+lim7x4+5x3+200x26x8x4=x+lim7x48x4=78

​ 例2:求 lim ⁡ x → + ∞ ( x 4 + 3 x − 99 ) ( 2 − x 5 ) ( 18 x 7 + 9 x 6 − 3 x 2 − 1 ) ( x + 1 ) \lim\limits_{x\to+\infty}\frac{(x^4+3x-99)(2-x^5)}{(18x^7+9x^6-3x^2-1)(x+1)} x+lim(18x7+9x63x21)(x+1)(x4+3x99)(2x5)

lim ⁡ x → + ∞ ( x 4 + 3 x − 99 ) ( 2 − x 5 ) ( 18 x 7 + 9 x 6 − 3 x 2 − 1 ) ( x + 1 ) = x 4 ( − x 5 ) ( 18 x 7 ) x = lim ⁡ x → + ∞ − x 18 = − ∞ \lim\limits_{x\to+\infty}\frac{(x^4+3x-99)(2-x^5)}{(18x^7+9x^6-3x^2-1)(x+1)}=\frac{x^4(-x^5)}{(18x^7)x}=\lim\limits_{x\to+\infty}-\frac{x}{18}=-\infty x+lim(18x7+9x63x21)(x+1)(x4+3x99)(2x5)=(18x7)xx4(x5)=x+lim18x=

4.4 x → + ∞ x\to+\infty x+ 时多项式型(无理)函数的极限

将根号下的多项式的首项开出来,然后仿照求有理函数极限。注意,如果开出来会使得原本多项式首项的系数变为 0 0 0,使用4.2提及的有理化(详见例题)。

​ 例1:求 lim ⁡ x → + ∞ 4 x 6 − 5 x 3 − 2 x 3 27 x 6 + 8 x 3 \lim\limits_{x\to+\infty}\frac{\sqrt{4x^6-5x^3}-2x^3}{\sqrt[3]{27x^6+8x}} x+lim327x6+8x 4x65x3 2x3

​ 这里处理分子时将首项开根号 4 x 6 − 2 x 3 = 0 \sqrt{4x^6}-2x^3=0 4x6 2x3=0,出现了需要有理化的情况。

lim ⁡ x → + ∞ 4 x 6 − 5 x 3 − 2 x 3 27 x 6 + 8 x 3 = lim ⁡ x → + ∞ 4 x 6 − 5 x 3 − 2 x 3 27 x 6 + 8 x 3 × 4 x 6 − 5 x 3 + 2 x 3 4 x 6 − 5 x 3 + 2 x 3 \lim\limits_{x\to+\infty}\frac{\sqrt{4x^6-5x^3}-2x^3}{\sqrt[3]{27x^6+8x}}=\lim\limits_{x\to+\infty}\frac{\sqrt{4x^6-5x^3}-2x^3}{\sqrt[3]{27x^6+8x}}\times\frac{\sqrt{4x^6-5x^3}+2x^3}{\sqrt{4x^6-5x^3}+2x^3} x+lim327x6+8x 4x65x3 2x3=x+lim327x6+8x 4x65x3 2x3×4x65x3 +2x34x65x3 +2x3

lim ⁡ x → + ∞ 4 x 6 − 5 x 3 − 2 x 3 27 x 6 + 8 x 3 = lim ⁡ x → + ∞ − 5 x 5 27 x 6 + 8 x 3 ( 4 x 6 − 5 x 5 + 2 x 3 ) \lim\limits_{x\to+\infty}\frac{\sqrt{4x^6-5x^3}-2x^3}{\sqrt[3]{27x^6+8x}}=\lim\limits_{x\to+\infty}\frac{-5x^5}{\sqrt[3]{27x^6+8x}(\sqrt{4x^6-5x^5}+2x^3)} x+lim327x6+8x 4x65x3 2x3=x+lim327x6+8x (4x65x5 +2x3)5x5

lim ⁡ x → + ∞ 4 x 6 − 5 x 3 − 2 x 3 27 x 6 + 8 x 3 = lim ⁡ x → + ∞ − 5 x 5 ( 3 x 2 ) ( 2 x 3 + 2 x 3 ) = − 5 12 \lim\limits_{x\to+\infty}\frac{\sqrt{4x^6-5x^3}-2x^3}{\sqrt[3]{27x^6+8x}}=\lim\limits_{x\to+\infty}\frac{-5x^5}{(3x^2)(2x^3+2x^3)}=-\frac{5}{12} x+lim327x6+8x 4x65x3 2x3=x+lim(3x2)(2x3+2x3)5x5=125

4.5 x → − ∞ x\to-\infty x 时的有理函数的极限

仍有: ∀ n ∈ ( 0 , + ∞ ) \forall n\in(0,+\infty) n(0,+),且 C C C 是常数,就有 lim ⁡ x → − ∞ C x n = 0 \lim\limits_{x\to-\infty}\frac{C}{x^n}=0 xlimxnC=0

因此与求 x → + ∞ x\to+\infty x+ 时的极限差不多。唯一注意的是正负号如 lim ⁡ x → − ∞ − x 18 = + ∞ \lim\limits_{x\to-\infty}-\frac{x}{18}=+\infty xlim18x=+

还有就是注意:如果 x < 0 x<0 x<0 并且想写 x 某次幂 n = x m \sqrt[n]{x^{\text{某次幂}}}=x^m nx某次幂 =xm 需要在 x m x^m xm加负号唯一情况是 n n n偶数 m m m奇数

​ 例:求 lim ⁡ x → − ∞ 4 x 6 + 8 2 x 3 + 6 x + 1 \lim\limits_{x\to-\infty}\frac{\sqrt{4x^6+8}}{2x^3+6x+1} xlim2x3+6x+14x6+8

lim ⁡ x → − ∞ 4 x 6 + 8 2 x 3 + 6 x + 1 = lim ⁡ x → − ∞ − 2 x 3 2 x 3 = − 1 \lim\limits_{x\to-\infty}\frac{\sqrt{4x^6+8}}{2x^3+6x+1}=\lim\limits_{x\to-\infty}\frac{-2x^3}{2x^3}=-1 xlim2x3+6x+14x6+8 =xlim2x32x3=1

4.6 包含绝对值的函数的极限

分左右极限考虑,分别去绝对值求解。

​ 例:求 lim ⁡ x → ( − 2 ) − ∣ x + 2 ∣ x + 2 \lim\limits_{x\to(-2)^-}\frac{|x+2|}{x+2} x(2)limx+2x+2∣

x < − 2 x<-2 x<2 ∣ x + 2 ∣ x + 2 = − 1 \frac{|x+2|}{x+2}=-1 x+2x+2∣=1

​ 故 lim ⁡ x → ( − 2 ) − ∣ x + 2 ∣ x + 2 = − 1 \lim\limits_{x\to(-2)^-}\frac{|x+2|}{x+2}=-1 x(2)limx+2x+2∣=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值