必修一指数函数知识点

指数函数

定义

一般地,函数 f ( x ) = a x ( a > 0 f(x)=a^x(a>0 f(x)=ax(a>0 a ≠ 1 a\neq1 a=1 叫做指数函数,其中 x x x 是自变量,函数的定义域是 R \R R

性质

  1. 单调性: a > 1 a>1 a>1 时单调递增, 0 < a < 1 0<a<1 0<a<1 时单调递减。

    → \to a > 1 a>1 a>1 y y y 轴右侧底大图高 y = ( 1 a ) x = a − x y=(\frac{1}{a})^x=a^{-x} y=(a1)x=ax y = a x y=a^x y=ax 关于 y y y 轴对称。

  2. 过定点 ( 0 , 1 ) (0,1) (0,1)

    → \to y = a x − a ( a > 0 y=a^x-a(a>0 y=axa(a>0 a ≠ 1 ) a\neq1) a=1) 恒过 ( 0 , 1 − a ) (0,1-a) (0,1a) ( 1 , 0 ) (1,0) (1,0)

  3. 指数函数 f ( x + y ) = f ( x ) + f ( y ) f(x+y)=f(x)+f(y) f(x+y)=f(x)+f(y)

  4. 复合函数单调性:同增异减

    例题:函数 f ( x ) = ( 1 5 ) x 2 + 3 x f(x)=(\frac{1}{5})^{x^2+3x} f(x)=(51)x2+3x 的单调增区间是 ( − ∞ , − 3 2 ) ‾ \underline{(-\infty,-\frac{3}{2})} (,23)

与指数函数有关的函数性质

  1. 常见奇偶函数:
偶函数奇函数
a x + a − x a^x+a^{-x} ax+ax a x − a − x a^x-a^{-x} axax
∅ \empty a x − a − x a x + a − x = a x − 1 a x + 1 \large \frac{a^x-a^{-x}}{a^x+a^{-x}}=\frac{a^x-1}{a^x+1} ax+axaxax=ax+1ax1
  1. k a x + m a x + n \large \frac{ka^x+m}{a^x+n} ax+nkax+m, m a x + n \large\frac{m}{a^x+n} ax+nm 必有对称中心。 (中心是什么别记结论) \color{red}{(中心是什么别记结论)} (中心是什么别记结论)

→ a x − 1 a x + 1 \to \large\frac{a^x-1}{a^x+1} ax+1ax1 ( 0 , 0 ) (0,0) (0,0) a x − 1 a x + 1 \large\frac{a^x-1}{a^x+1} ax+1ax1 + 1 = − 2 a x + 1 +1=\large\frac{-2}{a^x+1} +1=ax+12 ( 0 , − 1 ) (0,-1) (0,1) a x − 1 a x + 1 \large\frac{a^x-1}{a^x+1} ax+1ax1 − 1 = 2 a x a x + 1 -1=\large\frac{2a^x}{a^x+1} 1=ax+12ax ( 0 , 1 ) (0,1) (0,1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值