指数函数
定义
一般地,函数 f ( x ) = a x ( a > 0 f(x)=a^x(a>0 f(x)=ax(a>0 且 a ≠ 1 a\neq1 a=1 叫做指数函数,其中 x x x 是自变量,函数的定义域是 R \R R。
性质
-
单调性: a > 1 a>1 a>1 时单调递增, 0 < a < 1 0<a<1 0<a<1 时单调递减。
→ \to → a > 1 a>1 a>1 时 y y y 轴右侧底大图高, y = ( 1 a ) x = a − x y=(\frac{1}{a})^x=a^{-x} y=(a1)x=a−x 与 y = a x y=a^x y=ax 关于 y y y 轴对称。
-
过定点 ( 0 , 1 ) (0,1) (0,1)。
→ \to → y = a x − a ( a > 0 y=a^x-a(a>0 y=ax−a(a>0 且 a ≠ 1 ) a\neq1) a=1) 恒过 ( 0 , 1 − a ) (0,1-a) (0,1−a) 和 ( 1 , 0 ) (1,0) (1,0)
-
指数函数 f ( x + y ) = f ( x ) + f ( y ) f(x+y)=f(x)+f(y) f(x+y)=f(x)+f(y)
-
复合函数单调性:同增异减。
例题:函数 f ( x ) = ( 1 5 ) x 2 + 3 x f(x)=(\frac{1}{5})^{x^2+3x} f(x)=(51)x2+3x 的单调增区间是 ( − ∞ , − 3 2 ) ‾ \underline{(-\infty,-\frac{3}{2})} (−∞,−23) 。
与指数函数有关的函数性质
- 常见奇偶函数:
偶函数 | 奇函数 |
---|---|
a x + a − x a^x+a^{-x} ax+a−x | a x − a − x a^x-a^{-x} ax−a−x |
∅ \empty ∅ | a x − a − x a x + a − x = a x − 1 a x + 1 \large \frac{a^x-a^{-x}}{a^x+a^{-x}}=\frac{a^x-1}{a^x+1} ax+a−xax−a−x=ax+1ax−1 |
- k a x + m a x + n \large \frac{ka^x+m}{a^x+n} ax+nkax+m, m a x + n \large\frac{m}{a^x+n} ax+nm 必有对称中心。 (中心是什么别记结论) \color{red}{(中心是什么别记结论)} (中心是什么别记结论)
→ a x − 1 a x + 1 \to \large\frac{a^x-1}{a^x+1} →ax+1ax−1 过 ( 0 , 0 ) (0,0) (0,0) , a x − 1 a x + 1 \large\frac{a^x-1}{a^x+1} ax+1ax−1 + 1 = − 2 a x + 1 +1=\large\frac{-2}{a^x+1} +1=ax+1−2 过 ( 0 , − 1 ) (0,-1) (0,−1), a x − 1 a x + 1 \large\frac{a^x-1}{a^x+1} ax+1ax−1 − 1 = 2 a x a x + 1 -1=\large\frac{2a^x}{a^x+1} −1=ax+12ax 过 ( 0 , 1 ) (0,1) (0,1)。