算法与数据结构(13)------二分查找入门(上)

针对有序数据集合的查找算法:二分查找(Binary Search)算法,也叫折半查找算法。

举个例子:
假设有 1000 条订单数据,已经按照订单金额从小到大排序,每个订单金额都不同,并且最小单位是元。我们现在想知道是否存在金额等于 19 元的订单。如果存在,则返回订单数据,如果不存在则返回 null。

最简单的办法当然是从第一个订单开始,一个一个遍历这 1000 个订单,直到找到金额等于 19 元的订单为止。但这样查找会比较慢,最坏情况下,可能要遍历完这 1000 条记录才能找到。

那用二分查找能不能更快速地解决呢?我们假设只有 10 个订单,订单金额分别是:8,11,19,23,27,33,45,55,67,98。

还是利用二分思想,每次都与区间的中间数据比对大小,缩小查找区间的范围。其中,low 和 high 表示待查找区间的下标,mid 表示待查找区间的中间元素下标。
在这里插入图片描述
二分查找针对的是一个有序的数据集合,查找思想有点类似分治思想。每次都通过跟区间的中间元素对比,将待查找的区间缩小为之前的一半,直到找到要查找的元素,或者区间被缩小为 0。

O(logn) 这种对数时间复杂度。这是一种极其高效的时间复杂度,有的时候甚至比时间复杂度是常量级 O(1) 的算法还要高效。

因为 logn 是一个非常“恐怖”的数量级,即便 n 非常非常大,对应的 logn 也很小。比如 n 等于 2 的 32 次方,这个数很大了吧?大约是 42 亿。也就是说,如果我们在 42 亿个数据中用二分查找一个数据,最多需要比较 32 次。

二分查找的递归与非递归实现

最简单情况有序数组中不存在重复元素,在其中用二分查找值等于给定值的数据。查找存在重复元素的多种复杂情况将在后文介绍。


public int bsearch(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;

  while (low <= high) {
    int mid = (low + high) / 2;
    if (a[mid] == value) {
      return mid;
    } else if (a[mid] < value) {
      low = mid + 1;
    } else {
      high = mid - 1;
    }
  }

  return -1;
}

low、high、mid 都是指数组下标,其中 low 和 high 表示当前查找的区间范围,初始 low=0, high=n-1。mid 表示[low, high]的中间位置。我们通过对比 a[mid]与 value 的大小,来更新接下来要查找的区间范围,直到找到或者区间缩小为 0,就退出。

容易出错的地方:

1. 循环退出条件

注意是 low<=high,而不是 low,这和前面low和high初始化是左闭右闭[0,len-1],左闭右开[0,len)是对应的。

2.mid 的取值

实际上,mid=(low+high)/2 这种写法是有问题的。因为如果 low 和 high 比较大的话,两者之和就有可能会溢出。改进的方法是将 mid 的计算方式写成 low+(high-low)/2。更进一步,如果要将性能优化到极致的话,我们可以将这里的除以 2 操作转化成位运算 low+((high-low)>>1) (括号最好不要省去,因为不同编程语言运算符优先级不同)。因为相比除法运算来说,计算机处理位运算要快得多。

3.low 和 high 的更新
low=mid+1,high=mid-1。注意这里的 +1 和 -1,如果直接写成 low=mid 或者 high=mid,就可能会发生死循环。比如,当 high=3,low=3 时,如果 a[3]不等于 value,就会导致一直循环不退出。

递归写法


// 二分查找的递归实现
public int bsearch(int[] a, int n, int val) {
  return bsearchInternally(a, 0, n - 1, val);
}

private int bsearchInternally(int[] a, int low, int high, int value) {
  if (low > high) return -1;

  int mid =  low + ((high - low) >> 1);
  if (a[mid] == value) {
    return mid;
  } else if (a[mid] < value) {
    return bsearchInternally(a, mid+1, high, value);
  } else {
    return bsearchInternally(a, low, mid-1, value);
  }
}

二分查找应用场景的局限性

1.二分查找依赖的是顺序表结构,简单点说就是数组

那二分查找能否依赖其他数据结构呢?比如链表。答案是不可以的,主要原因是二分查找算法需要按照下标随机访问元素。数组按照下标随机访问数据的时间复杂度是 O(1),而链表随机访问的时间复杂度是 O(n)。所以,如果数据使用链表存储,二分查找的时间复杂就会变得很高。

2.二分查找针对的是有序数据

二分查找对这一点的要求比较苛刻,数据必须是有序的。如果数据没有序,我们需要先排序。前面章节里我们讲到,排序的时间复杂度最低是 O(nlogn)。所以,如果我们针对的是一组静态的数据,没有频繁地插入、删除,我们可以进行一次排序,多次二分查找。这样排序的成本可被均摊,二分查找的边际成本就会比较低。

二分查找只能用在插入、删除操作不频繁,一次排序多次查找的场景中。针对动态变化的数据集合,二分查找将不再适用。那针对动态数据集合,可以考虑二叉树相关算法。

3.数据量太小不适合二分查找

如果要处理的数据量很小,完全没有必要用二分查找,顺序遍历就足够了。比如我们在一个大小为 10 的数组中查找一个元素,不管用二分查找还是顺序遍历,查找速度都差不多。只有数据量比较大的时候,二分查找的优势才会比较明显。

如果数据之间的比较操作非常耗时,不管数据量大小,我都推荐使用二分查找。比如,数组中存储的都是长度超过 300 的字符串,如此长的两个字符串之间比对大小,就会非常耗时。我们需要尽可能地减少比较次数,而比较次数的减少会大大提高性能,这个时候二分查找就比顺序遍历更有优势。

4.数据量太大也不适合二分查找

二分查找的底层需要依赖数组这种数据结构,而数组为了支持随机访问的特性,要求内存空间连续,对内存的要求比较苛刻。比如,我们有 1GB 大小的数据,如果希望用数组来存储,那就需要 1GB 的连续内存空间。

注意这里的“连续”二字,也就是说,即便有 2GB 的内存空间剩余,但是如果这剩余的 2GB 内存空间都是零散的,没有连续的 1GB 大小的内存空间,那照样无法申请一个 1GB 大小的数组。而我们的二分查找是作用在数组这种数据结构之上的,所以太大的数据用数组存储就比较吃力了,也就不能用二分查找了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值