《几何原本》命题I.14
两条不在一边的射线过任意直线上的一点,所构成的邻角若等于
18
0
∘
180^{\circ}
180∘,那么这两条射线构成一条直线。
设
B
C
BC
BC 与
B
D
BD
BD 能构成一条直线,
B
C
BC
BC 与
B
E
BE
BE 也能构成一条直线,则
∠
C
B
A
+
∠
A
B
C
=
18
0
∘
,
∠
C
B
A
+
∠
A
B
D
=
18
0
∘
\angle CBA+\angle ABC=180^{\circ},\angle CBA+\angle ABD=180^{\circ}
∠CBA+∠ABC=180∘,∠CBA+∠ABD=180∘
∠
A
B
D
=
∠
A
B
E
\angle ABD=\angle ABE
∠ABD=∠ABE
则
B
D
BD
BD 与
B
E
BE
BE 重合
则只有唯一的
B
C
BC
BC 与
B
D
BD
BD 构成一条直线