《几何原本》命题I.14

《几何原本》命题I.14

两条不在一边的射线过任意直线上的一点,所构成的邻角若等于 18 0 ∘ 180^{\circ} 180,那么这两条射线构成一条直线。
在这里插入图片描述
B C BC BC B D BD BD 能构成一条直线, B C BC BC B E BE BE 也能构成一条直线,则
∠ C B A + ∠ A B C = 18 0 ∘ , ∠ C B A + ∠ A B D = 18 0 ∘ \angle CBA+\angle ABC=180^{\circ},\angle CBA+\angle ABD=180^{\circ} CBA+ABC=180,CBA+ABD=180
∠ A B D = ∠ A B E \angle ABD=\angle ABE ABD=ABE
B D BD BD B E BE BE 重合
则只有唯一的 B C BC BC B D BD BD 构成一条直线

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值