01
方案概述
根据折射定律,当两介质折射率不同时,光线从一介质进入另一介质时,光线将发生偏折,入射角和折射角不相等。而我们可以将角度的变化转化为光斑位移的变化。因此,可以利用光电位置敏感器件测量光斑位移的变化量,从而计算出待测介质的折射率。
02
测量原理及公式
图1
如图1,我们需要找出光斑位移量与折射率之间的关系,因此我们建立关系式:
由上式有
再利用折射定律与三角变化公式有
最终将公式中的提取出来可得
根据上式,我们可以得出,只需要将已知厚度的待测平行平板介质放置在固定的角度上,然后测量出光斑的位移量我们即可以求出折射率。因此,我们测量光路图可按如下方式放置:
图2
图2中滤光片的作用是为了得到单色光,避免PSD对不同波段的响应特性不同造成误差;狭缝是为了产生较细的条纹,为了PSD能更好地测量。待测介质则需要是平行平板,以一定的角度放置在码盘上,确定入射角度。
图3
其中PSD的原理是当入射光斑照射在光敏面上能产生与光强成比例的光电流。而且由于 P 层的电阻是均匀的 ,所以由两极输出的电流分别与光点到两极的距离成反比。
光斑位移量与电流之间的关系有
因此我们只需测量两极电流即可得到光斑的位移变化量,从而即能计算出待测介质的折射率。
03
误差分析
3.1量程的探究
以常见的K9冕牌玻璃为例进行分析,其折射率,假设平行平板玻璃厚度为5cm,光线以的入射角入射,则产生的位移量
(3-1)
(3-2)
根据滨松官方资料得知,一般一维PSD的探测面在2mm-40mm之间,可以满足折射率的测量,且可以通过调整平行平板的厚度调节位移的偏移量,控制在量程之内。
本次误差分析以一款常见的一维PSD产品为例,型号:PSD-1315,其有效感应面积达到,分辨率为0.1um,在5mm厚的平行平板的条件下即可测量折射率的介质,可以实现高折射率的测量。
3.2折射率的标准不确定度
折射率的测量误差主要来源于三个方面:
(3-3)
其中
(3-4)
(3-6)
(3-7)
其中当厚度d可以采用螺旋测微仪测量,入射角用角度盘确定时,厚度测量的标准不确定度和入射角测量的标准不确定度均为
(3-8)
式中
螺旋测微仪的精度可达到10um,而码盘精度较高的有一、二等三角测量的J07级仪器,水平度盘格值可达到1'。
其中的测量的误差主要来源有狭缝的衍射因素和PSD的分辨力,但如果衍射的光束能量分布稳定,由于我们测量的是位移的相对变化量,因此可以排除衍射造成的影响。最终的测量的误差将由PSD的分辨率决定。
(3-9)
通过计算
(3-10)
(3-11)
(3-12)
(3-13)
综上分析,最终通过选用上述的器材进行测量时,产生的误差可以达到0.045,而且由和d产生的误差相对于度盘都可以忽略不计,因此若想进一步提高测量精度,主要考虑提高入射角的精度,且通过计算,若入射角的误差减少到光学度盘的5”~10”时,误差可以减少到10-4。
更多科研干货教程,可以点击下面链接获取哦~