台大李宏毅Machine Learning 2017Fall学习笔记 (13)Semi-supervised Learning

台大李宏毅Machine Learning 2017Fall学习笔记 (13)Semi-supervised Learning

本博客参考整理自:
http://blog.csdn.net/xzy_thu/article/details/69808817#t8
半监督学习的训练数据,有一部分是标注数据,有一部分是无标注数据。
Transductive learning(直推学习)和Inductive learning(归纳学习)都可算是半监督学习,区别在于前者的无标注数据是测试数据(除去label),而后者的无标注数据不包括测试数据。实际中用哪种常取决于是否有测试集。
题外话:Transductive Learning:从彼个例到此个例,有点象英美法系,实际案例直接结合过往的判例进行判决。关注具体实践。
Inductive Learning:从多个个例归纳出普遍性,再演绎到个例,有点象大陆法系,先对过往的判例归纳总结出法律条文,再应用到实际案例进行判决。从有限的实际样本中,企图归纳出普遍真理,倾向形而上,往往会不由自主地成为教条。参考博客:
http://blog.csdn.net/wendox/article/details/50474264
无标注数据的分布会让我们做出一些假设,半监督学习有没有用就取决于假设是否合理。

Semi-supervised Learning for Generative Model(生成模型的半监督学习)

若全部是带标签数据,监督模型的建立过程前面小节中讲过,得到的模型如下:
这里写图片描述
半监督生成模型的建立过程,无标注数据有助于重新估计生成模型假设中的参数,从而影响决策边界。采用EM算法
这里写图片描述
这里写图片描述
EM的每次(E步、M步)都让likelihood增加一点。

Semi-supervised Learning Low-density Separation(半监督学习:低密度分离)

Selftraining
从标注数据得到模型 f (用什么方法都可以),将模型 f 用于无标注数据得到伪标签,将一部分无标注数据连同伪标签移入标注数据中(选择那些无标注数据是开放性的,可以给每个伪标签一个权重),重复训练、再次得到 f...... 。具体流程如下图所示:
这里写图片描述
回归问题用self-training不影响 f ,所以回归问题不能用self-training方法。
self-training类似于生成模型的半监督学习,区别在于:self-training是硬标签,而Semi-supervised Learning for Generative Model是软标签。
对神经网络来讲,用软标签是没有用的。用硬标签就相当于用Low-density Separation Assumption(强制属于某一类,非黑即白)。
EntropybasedRegularization
如果神经网络的输出是一个分布,我们希望这个分布要集中。
这里写图片描述

Semi-supervised Learning Smoothness Assumption(半监督学习:平滑假设)

假设特征的部分是不均匀的(在某些地方集中,某些地方分散),如果两个特征在高密度区域是相近的,那么二者的标签是相同的。
这里写图片描述
这里写图片描述
上图中,两个“2”之间有各种2的变体,两个正侧面之间有45°侧面、正面等。
用聚类再标注的方法,可以,但是用像素做聚类结果不会很好,因为有的同类不像,有的异类相像。应该先用deep autoencoder抽feature,再做聚类。
也可以用图结构来表示高密度区域,图的建立与结果很关键。
这里写图片描述
定义 s(xi,xj) 的时候,如果 xi,xj 是图像,那么根据像素定义相似度结果应该不会好,用autoencoder抽feature比较好。
exp指数函数是必要的,可以带来比较好的performance,让距离稍远一点s就很小。
用基于图的方法需要data足够多,不然信息传不过去。
这里写图片描述
定义平滑度,将其作为损失函数中的正则项:
这里写图片描述
这里写图片描述
这里写图片描述
计算smoothness不一定是在output算

Semi-supervised Learning Better Representation(半监督学习:更好的表示)

精神:寻找在表面观察背后隐藏着的更好的表示。
这里写图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值