【数学建模】相关性分析 - 皮尔逊相关系数 & 斯皮尔曼相关系数

前言:

皮尔逊Person相关系 (要求数据满足正态分布

总体和样本

总体皮尔逊Person相关系数

一般说的相关系数就是皮尔逊相关系数

就是概率论的知识

消除量纲影响:

总体:

样本:

意义:

误区:

用于衡量线性

两个变量必须线性相关。

不是线性相关函数,不一样

总结:

很多教材以0.7相关

例题:

MATLAB EXCEL SPSS都能做

MATLAB

一个很好的习惯

SPSS

C(n,2) 的散点图可以用spss计算

假设检验:

概率论内容,考过的

对皮尔逊相关系数进行假设检验

条件:

第一步,第二步:

第三步:

第四步:

第五步:

更好用的方法:P值判断法

matlab:

spss

image-20200824001828642

如何检验数据是不是正态分布:

正态分布JB检验(样本n>30)

matlab:

Shapiro-wikl检验:

Q-Q图(数据量非常大,不推荐用:

斯皮尔曼spearman相关系数(不要求正态分布

不要求是正态分布

img

第二种定义(matlab用的

MATLAB

斯皮尔曼显著检验:

小样本

大样本:

image-20200824005040748

总结:

©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页