spark-day04-依赖关系-持久化-分区器-数据结构

一:依赖关系

1:依赖和血缘关系介绍

        rdd.todebugstring:打印血缘关系

        rdd.dependencies:打印依赖关系

2:保存血缘关系

 3:OneToOne依赖---窄依赖

 4:shuffle依赖--宽依赖

        新的RDD的一个分区的数据依赖于旧的RDD多个分区的数据,这个依赖称之为shuffle依赖。

5:窄依赖的任务

 6:宽依赖的任务

 7:任务分类

1: 一个main方法里面可能有多个行动算子,比如collect,所以会有多个job

2:一个job可能会有多个阶段,比如上图宽依赖

3:一个阶段可能会有多个task,比如上图一个阶段中的多个分区

 二:持久化

1:RDD自身并不会保存数据,重复读取对象

 2:引入持久化进行优化(文件、内存均可)

3:持久化操作必须在行动算子执行时完成的。不然没有数据,没办法进行持久化。 

4:RDD对象的持久化操作并不一定是为了重用,在数据执行较长,或数据比较重要的场合也可以采用持久化操作。

5:CheckPoint检查点

所谓的检查点,就是通过将RDD中间结果写入磁盘。

由于血缘依赖过长会造成容错成本过高,这样就不如在中间阶段做检查点容错,如果检查点之后出现问题,可以从检查点开始重做血缘,减少了开销。

对RDD进行checkpoint操作并不会马上被执行,必须执行action操作才能触发。

6: 缓存和检查点的区别

1:cache缓存只是将数据保存起来,不切断血缘依赖。checkpoint检查点切断血缘依赖。

2:cache缓存的数据通常存储在磁盘、内存等地方,可靠性低。checkpoint的数据通常存储在hdfs等容错、高可用的文件系统,可靠性高。

3:建议对checkpoin的rdd使用cache缓存,这样checkpoint的job只需从cache缓存中读取数据即可,否则需要再从头计算一次rdd

cache:将数据临时存储在内存中进行数据重用

                会在血缘关系中添加新的依赖。一旦出现问题,可以重头读取数据。

persist:将数据临时存储在磁盘文件中进行数据重用

                涉及到磁盘IO,性能较低,但是数据安全

                如果作业执行完毕,临时保存的数据文件就会丢失

checkpoint:将数据长久的保存在磁盘文件中进行数据重用

                涉及到磁盘IO,性能较低,但是数据安全

                为了保证数据安全,所以一般情况下,会独立执行作业

                为了能够提高效率,一般情况下,是需要和cache联合使用

                执行过程中,会切断血缘关系,重新建立新的血缘关系。因为保存的数据比较安全,所以就是数据源的保存地址发生了改变。导致血缘关系发生改变。

三:分区器

1:自定义分区器:根据设置的规则,将同一规则的数据放在同一分区内

package com.atguigu.bigdata.spark.rdd.part

import org.apache.spark.{Partitioner, SparkConf, SparkContext}

object Spark01_RDD_Part {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("RDD")
    val sc = new SparkContext(sparkConf)

    val rdd = sc.makeRDD(List(
      ("nba","************"),
      ("cba","************"),
      ("wnba","************"),
      ("nba","************")
    ),3)

    val value = rdd.partitionBy(new MyPartitioner)
    value.saveAsTextFile("output")
    sc.stop()
  }

  class MyPartitioner extends Partitioner{
    //分区数量
    override def numPartitions: Int = 3

    //根据数据的key值,返回数据的分区索引(从0开始)
    override def getPartition(key: Any): Int = {
      key match {
        case "nba" => 0
        case "wnba" => 1
        case _ => 2
      }
    }
  }
}

四:文件的读取与保存

1:保存

package com.atguigu.bigdata.spark.rdd.IO

import org.apache.spark.{SparkConf, SparkContext}

object Spark01_RDD_IO_Save {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("RDD")
    val sc = new SparkContext(sparkConf)

    val rdd = sc.makeRDD(
      List(
        ("a",1),
        ("b",2),
        ("c",3)
      )
    )
    rdd.saveAsTextFile("output1")
    rdd.saveAsObjectFile("output2")
    rdd.saveAsSequenceFile("output3")

    sc.stop()
  }
}

2:读取

package com.atguigu.bigdata.spark.rdd.IO

import org.apache.spark.{SparkConf, SparkContext}

object Spark02_RDD_IO_Load {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("RDD")
    val sc = new SparkContext(sparkConf)

    val rdd = sc.textFile("output1")
    println(rdd.collect().mkString(","))

    val rdd1 = sc.objectFile[(String,Int)]("output2")
    println(rdd1.collect().mkString(","))

    val rdd2 = sc.sequenceFile[String,Int]("output3")
    println(rdd2.collect().mkString(","))

    sc.stop()
  }
}

五:数据结构--累加器(分布式的共享只写变量)

1:概念

累加器用来将executor端变量信息聚合到driver端。在driver程序中定义的变量,在executor端的每个task都会得到这个变量的一份新的副本,每个task更新这些副本的值后,传回driver端进行merge

package com.atguigu.bigdata.spark.acc

import org.apache.spark.{SparkConf, SparkContext}

object Spark01_Acc {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("RDD")
    val sc = new SparkContext(sparkConf)
    val rdd = sc.makeRDD(List(1,2,3,4))

    //获取系统累加器,spark默认提供了简单数据聚合的累加器
    val sumAcc = sc.longAccumulator("sum")
    rdd.foreach(
      num => {
        sumAcc.add(num)
      }
    )

    println(sumAcc.value)
    sc.stop()
  }
}

 2:累加器的少加和多加

package com.atguigu.bigdata.spark.acc

import org.apache.spark.{SparkConf, SparkContext}

object Spark02_Acc {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("RDD")
    val sc = new SparkContext(sparkConf)
    val rdd = sc.makeRDD(List(1,2,3,4))

    //获取系统累加器,spark默认提供了简单数据聚合的累加器
    val sumAcc = sc.longAccumulator("sum")
    val mapRDD = rdd.map(
      num => {
        sumAcc.add(num)
        num
      }
    )

    //少加:转换算子中调用累加器,如果没有行动算子的话,那么不会执行
    mapRDD.collect()
    mapRDD.collect()
    //多加:多次执行
    println(sumAcc.value)
    sc.stop()
  }
}

3:自定义累加器

package com.atguigu.bigdata.spark.acc

import org.apache.spark.util.AccumulatorV2
import org.apache.spark.{SparkConf, SparkContext}

object Spark03_Acc {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("RDD")
    val sc = new SparkContext(sparkConf)
    val rdd = sc.makeRDD(List("hello","spark","hello"))

    //累加器:word count
    //创建累加器对象
    val wcAcc = new MyAccumulator()
    //向spark进行注册
    sc.register(wcAcc,"wordCountAcc")
    rdd.foreach(
      word => {
        //数据的累加(使用累加器)
        wcAcc.add(word)
      }
    )
    println(wcAcc.value)
    sc.stop()
  }

  /*
 自定义累加器
 1.继承:AccumulatorV2 定义泛型
    IN:累加器输入的数据类型
    OUT:累加器返回的数据类型

    2.重写方法
   */
  class MyAccumulator extends AccumulatorV2[String,Map[String,Long]] {

    private var wcMap = Map[String,Long]()

    //判断是否初始状态
    override def isZero: Boolean = {
      wcMap.isEmpty
    }

    override def copy(): AccumulatorV2[String, Map[String, Long]] = {
      new MyAccumulator()
    }

    override def reset(): Unit = {
      wcMap.clear()
    }

    //获取累加器需要计算的值
    override def add(word: String): Unit = {
      val newCnt = wcMap.getOrElse(word,0L) + 1
      wcMap.updated(word,newCnt)
    }

    //driver合并多个累加器
    override def merge(other: AccumulatorV2[String, Map[String, Long]]): Unit = {
      val map1 = this.wcMap
      val map2 = other.value
      map2.foreach{
        case (word,count) => {
          val newCount = map1.getOrElse(word,0L) + count
          map1.updated(word,newCount)
        }
      }
    }

    //累加器结果
    override def value: Map[String, Long] = {
      wcMap
    }
  }

}

六:广播变量

        Task的量,是由driver的分区数决定的,和executor的个数无关

        转换为

       只能访问不能修改

        spark中的广播变量就可以将闭包的数据保存到executor的内存中,不能进行更改。

package com.atguigu.bigdata.spark.acc

import org.apache.spark.broadcast.Broadcast
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.util.AccumulatorV2

import scala.collection.mutable

object Spark04_Bc {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("RDD")
    val sc = new SparkContext(sparkConf)
    val rdd1 = sc.makeRDD(List(
      ("a",1),("b",2),("c",3)
    ))

    /*val rdd2 = sc.makeRDD(List(
      ("a",4),("b",5),("c",6)
    ))

    //join会导致数据量几何增长,并且会影响shuffle大的性能,不推荐使用
    val value:RDD[(String,(Int,Int))] = rdd1.join(rdd2)

    value.collect().foreach(println)*/

    /*val map = mutable.Map(("a",4),("b",5),("c",6))
    rdd1.map{
      case (w,c) => {
        val l:Int = map.getOrElse(w,0)
        (w,(c,l))
      }
    }.collect().foreach(println)*/

    val map = mutable.Map(("a",4),("b",5),("c",6))
    //封装广播变量
    val bc:Broadcast[mutable.Map[String,Int]] = sc.broadcast(map)
    rdd1.map{
      case (w,c) => {
        //访问广播变量
        val l:Int = bc.value.getOrElse(w,0)
        (w,(c,l))
      }
    }.collect().foreach(println)

    sc.stop()
  }

}

 

        

本套大数据热门技术Spark+机学习+贝叶斯算法系列课程,历经5年沉淀,调研企业上百家,通过上万学员汇总,保留较为完整的知识体系的同时,让每个模块看起来小而精,碎而不散。在本课程中基于大量案例实战,深度剖析和讲解Spark2.4原理和新特性,且会包含完全从企业真实业务需求中抽取出的案例实战。内容涵盖Spark核心编程、Spark SQL和Spark Streaming、Spark内核以及源码剖析、推荐系统、Kafka消费机制、Spark学习、朴素贝叶斯算法、企业级实战案例等。通过理论和实际的紧密结合,可以使学员对大数据Spark技术栈有充分的认识和理解,在项目实战中对Spark和流式处理应用的场景、以及大数据开发有更深刻的认识;并且通过对流处理原理的学习和与批处理架构的对比,可以对大数据处理架构有更全面的了解,为日后成长为架构师打下基础。本套教程可以让学员熟练掌握Spark技术栈,提升自己的职场竞争力,实现更好的升职或者跳槽,或者从J2EE等传统软件开发工程师转型为Spark大数据开发工程师,或是对于正在从事Hadoop大数据开发的朋友可以拓宽自己的技术能力栈,提升自己的价值。Spark应用场景Yahoo将Spark用在Audience Expansion中的应用,进行点击预测和即席查询等。淘宝技术团队使用了Spark来解决多次迭代的机学习算法、高计算复杂度的算法等。应用于内容推荐、社区发现等。腾讯大数据精准推荐借助Spark快速迭代的优势,实现了在“数据实时采集、算法实时训练、系统实时预测”的全流程实时并行高维算法,最终成功应用于广点通pCTR投放系统上。优酷土豆将Spark应用于视频推荐(图计算)、广告业务,主要实现机学习、图计算等迭代计算。本套大数据热门技术Spark+机学习+贝叶斯算法共计13季,本套为第5季。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

总会有天明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值