误分类问题

本文探讨了在二分类和三分类问题中准确率(Acc)的计算,并引入了代价敏感学习的概念,强调不同误分类代价的影响。在案例中,讨论了如何根据误分类代价调整样本比例,并对特定情境下的代价比例变化进行了思考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分类问题的准确性

在二分类问题中,经常使用 A c c Acc Acc 来表示准确率,它的定义为:

A c c = T P + T N T P + F P + T N + F N , (1) Acc = \frac{TP + TN}{TP + FP + TN + FN}, \tag{1} Acc=TP+FP+TN+FNTP+TN,(1)

其中, T P TP TP 表示正确挑出来的一类样本 ( O O O) 数量; F P FP

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值