本章节更加注重强调计算问题,主线其实就是进行导函数的计算,围绕其展开的一些证明题更多的研究的是导数的存在性问题,而解决这类问题,需要对定义进行深刻理解,也就是对于导数的定义式应该足够了解。
课本简单概括
5.1导数的概念
本小节首先由极限的形式给出了的可导的严格定义(其实不难看出,在第三章介绍完函数极限之后,第四章研究函数连续性,第五章研究函数的导数,其出发点均是从极限出发,这也体现了极限的基础性与重要性);接着由导数引入导函数,即在一段区间上均可导的函数被称之为可导函数,进而可以求出其对应的导函数;最后介绍了导数的几何意义,即导数为在该点处切线的斜率,同时介绍了切线与法线的求解方法与公式。
5.2求导法则
本小节是本章的重点,主要介绍了求导的方法,包括基本函数,反函数以及复合函数。在这一小节的学习中,一定要牢记求导法则,对于不同的函数灵活求导,课本最后也提供了常见函数的导函数,如下图所示。
5.3参变量函数的导数
本小节较为简单,掌握基本的求导通法即可应对大部分问题。
5.4高阶导数
本小节是本章的难点所在,尤其是在判断高阶导数存在性问题时,很容易出现错误,此处应该注意,同时对于复合函数的高阶导数在计算过程中一定要注意求导法则,不要出现遗落。
5.5微分
本小节首先介绍了微分的概念,其实在这里面,我们只需要区分清楚与
的具体含义即可,可以借助图象快速理解,知晓
是
的线性主部;其次关于微分的运算法则与高阶微分其实光从计算层面上而言与导数并无区别,计算过程中记得添加
即可。
小结
本章顺承函数的连续性而展开,应该明确:对于一元函数而言:连续不一定可导,可导一定连续;与此同时,一元函数中,可导与可微是等价的。这将帮助我们更好进行概念判断,除此之外,本章更多的是涉及计算,因此一定要加强关于导函数的计算练习。