本章是整个一元函数微分学中最为精华和重点的地方,相对应的,本章的学习难度较大,在学习过程中,建议大家反复阅读教材,仔细揣摩课本习题的相关沿用知识。
根据本章标题其实不难发现,本章节可分为两大部分:微分中值定理的定理部分与应用部分。本章节内容较多,学习过程中建议增加投入时间。定理部分其实包括费马定理、罗尔定理、拉格朗日中值定理、柯西中值定理以及泰勒定理(泰勒公式),应用部分,简而言之,就是通过导数来分析函数的相关性性质:单调性、凹凸性等,以及由其引出的极值点、拐点、单调区间、保凸区间等相关计算,同时还有利用微分中值定理进行极限的计算也是分析的重点。
课本简单概括
定理部分
关于微分中值定理的具体内容,此处便不再赘述,大家可以参加课本。在学习过程中,一定要注意掌握各个定理之间的证明推出关系,比如:如何利用罗尔定理证明拉格朗日中值定理。除此之外,还应该掌握各个定理应用的具体条件,在适宜条件下才可以进行定理的运用。
应用部分
应用一:单调性、单调区间(#6.1节)
掌握运用一阶导数判断函数单调性的方法,通过判断一阶导数的正负判断函数的单调性(单调递增、单调递减)。
应用二:极值、最值(#6.4节)
掌握极值判断的三个充分条件,并应用其对某一段定义域上的函数进行极值的求解。
应用三:凹凸性、保凸区间(#6.5节)
掌握凹(凸)函数的定义,通过判断二阶导数的正负判断函数的凹凸性,并且掌握对于保凸区间的求解与分析。
应用四:极限求解(#6.2节、#6.3节)
掌握运用经由柯西中值定理推导出的洛必达法则进行极限的求解(一定要注意使用的前提条件),掌握运用泰勒展开的方式进行极限的求解。
应用五:函数的图象(#6.6节)
对于函数的图象,应该综合运用单调性、凹凸性、渐近线、特殊点等关键信息进行图像的绘制。