26考研|数学分析:微分中值定理及其应用

本章是整个一元函数微分学中最为精华和重点的地方,相对应的,本章的学习难度较大,在学习过程中,建议大家反复阅读教材仔细揣摩课本习题的相关沿用知识

根据本章标题其实不难发现,本章节可分为两大部分:微分中值定理的定理部分与应用部分。本章节内容较多,学习过程中建议增加投入时间。定理部分其实包括费马定理、罗尔定理、拉格朗日中值定理、柯西中值定理以及泰勒定理(泰勒公式),应用部分,简而言之,就是通过导数来分析函数的相关性性质:单调性、凹凸性等,以及由其引出的极值点、拐点、单调区间、保凸区间等相关计算,同时还有利用微分中值定理进行极限的计算也是分析的重点。

课本简单概括

定理部分

关于微分中值定理的具体内容,此处便不再赘述,大家可以参加课本。在学习过程中,一定要注意掌握各个定理之间的证明推出关系,比如:如何利用罗尔定理证明拉格朗日中值定理。除此之外,还应该掌握各个定理应用的具体条件,在适宜条件下才可以进行定理的运用。

应用部分

应用一:单调性、单调区间(#6.1节)

掌握运用一阶导数判断函数单调性的方法,通过判断一阶导数的正负判断函数的单调性(单调递增、单调递减)。

应用二:极值、最值(#6.4节)

掌握极值判断的三个充分条件,并应用其对某一段定义域上的函数进行极值的求解。

应用三:凹凸性、保凸区间(#6.5节)

掌握凹(凸)函数的定义,通过判断二阶导数的正负判断函数的凹凸性,并且掌握对于保凸区间的求解与分析。

应用四:极限求解(#6.2节、#6.3节)

掌握运用经由柯西中值定理推导出的洛必达法则进行极限的求解(一定要注意使用的前提条件),掌握运用泰勒展开的方式进行极限的求解。

应用五:函数的图象(#6.6节)

对于函数的图象,应该综合运用单调性、凹凸性、渐近线、特殊点等关键信息进行图像的绘制。

应用六:方程的近似解(#6.7节)

课本经典习题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值