XGBoost VS GBDT (二者的区别)

①XGBoost损失函数是误差部分是二阶泰勒展开,GBDT 是一阶泰勒展开。因此损失函数近似的更精准。
②XGBoost目标函数中添加了正则项(L1、L2正则项),可以有效的防止过拟合
③XGBoost可以自定义目标函数objective,因此更加灵活
④XGBoost可以自定义评估指标eval_metric
⑤XGBoost除了可以进行样本抽样,还实现了特征抽样
四个随机抽样特征的参数中(subsample–控制生成每棵树的随机抽样样本比例、colsample_bytree–每次生成树时,随机抽样特征的比例、colsample_bylevel–每次生成树的一层时,随机抽样特征的比例、colsample_bynode–每次生成一个叶子节点时,随机抽样特征的比例),前三个比较常用。在建立树时对特征进行抽样其实是决策树和随机森林中比较常见的 一种方法,但是在XGBoost之前,这种方法并没有被使用到boosting算法当中过。Boosting算法一直以抽取样本 (横向抽样)来调整模型过拟合,而实践证明其实纵向抽样(抽取特征)也能够防止过拟合。
⑥XGBoost实现了并行化处理 :
如何并行化:XGBoost的并行不是tree粒度的并行,XGBoost也是一次迭代完成才能进行下一次迭代的(第t次迭代的代价函数里 面包含了前面t-1次迭代的预测值)。 XGBoost的并行是在特征粒度上的。我们知道,决策树的学习最耗时的一个步骤就是对特征的值进行排序(因为要 确定最佳分割点)。XGBoost在训练之前,

XGBoost(eXtreme Gradient Boosting)GBDT(Gradient Boosted Decision Trees,梯度提升决策树)在本质上都是基于决策树的集成学习算法,但有以下几个关键的区别: 1. **并行化与优化**[^4]: - XGBoost 提供了高度优化的分布式计算框架,可以有效利用多核CPUGPU资源。它引入了稀疏性感知的更新策略列式存储,使得大数据集训练变得更快。 - GBDT 的原生实现通常不如 XGBoost 这样优化,但它更容易理解实现。 2. **硬件支持**[^4]: - XGBoost 更适合大规模数据复杂模型的场景,因为它对硬件进行了深度优化。 - GBDT 则更适用于资源有限的小规模项目或教学环境。 3. **正则化参数**[^4]: - XGBoost 引入了L1L2正则化来防止过拟合,通过`reg_alpha``reg_lambda`控制。 - GBDT 的正则化通常由剪枝操作实现,可通过设置树的最大深度或最小叶子节样本数来控制。 4. **学习率调度**[^4]: - XGBoost 支持自适应的学习率调整,如通过`eta`或`learning_rate`参数。 - GBDT 学习率通常是固定的,但在某些实现中也可以手动调整。 5. **API文档**[^4]: - XGBoost 提供了丰富的接口详细的文档,使其更易于使用扩展。 - GBDT 的 API 可能相对简单,但可能不如 XGBoost 全面。 总的来说,XGBoost 是一个功能强大的、高度优化的库,而 GBRT 更像是一个基础概念,许多现代库如LightGBM(一种高效的GBDT变体)在设计上借鉴了XGBoost的一些特性。如果你需要处理大型数据集或需要高效性能,XGBoost可能是更好的选择;如果资源有限或者希望有更多定制选项,GBDT 或其开源实现可能是首选。[^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值