几种激活函数的详解及代码实现:sigmoid()、softmax()、tanh()、relu()、leaky_relu()

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

1.sigmoid()函数

# Sigmoid函数常被用作神经网络的激活函数,将变量映射到0,1之间
# 除了输出层是一个二元分类问题外,基本不用Sigmoid函数
def sigmoid(x):
    y = 1/(1+np.exp(-x))
    return y

曲线绘制:

X = np.arange(-5, 5, 0.1)
y = sigmoid(X)
plt.plot(X, y)
plt.ylim(-0.1, 1.1)
plt.scatter(0,0.5,marker='*',c='r')
plt.show(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值