集成学习与Voting模型(员工离职率预测)

提供四种预测模型的方案和评估结果:KNN、逻辑回归、决策树分类、voting模型

# 1.导入数据,将特征和预测值进行分离,确定x,y值
import numpy as np 
import pandas as pd
worker = pd.read_csv('C:\\Users\\Liu\\Desktop\\data.csv')
x = worker.drop(columns = ['Attrition'])
y = worker['Attrition']

# 2.数据分割
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,random_state = 666)

# 3.分别导入网格搜索调优的KNN,搜索调优的逻辑回归,搜索调优的决策树模型
from sklearn.neighbors import  KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier

#(1)网格搜索调优的KNN
knn_clf = KNeighborsClassifier()

from sklearn.model_selection import GridSearchCV
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值