提供四种预测模型的方案和评估结果:KNN、逻辑回归、决策树分类、voting模型
# 1.导入数据,将特征和预测值进行分离,确定x,y值
import numpy as np
import pandas as pd
worker = pd.read_csv('C:\\Users\\Liu\\Desktop\\data.csv')
x = worker.drop(columns = ['Attrition'])
y = worker['Attrition']
# 2.数据分割
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,random_state = 666)
# 3.分别导入网格搜索调优的KNN,搜索调优的逻辑回归,搜索调优的决策树模型
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
#(1)网格搜索调优的KNN
knn_clf = KNeighborsClassifier()
from sklearn.model_selection import GridSearchCV