中红外BIC 全介质超表面 光谱调制 FDTD仿真

本文介绍了利用双椭圆纳米柱结构的全介质硅超表面,通过FDTD仿真实现BIC共振效应的光谱调控方法。作者详细展示了结构设计、共振峰调整、Q值计算以及参数扫描脚本的应用,提供了一套适用于任意波段的可扩展BIC仿真教程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

中红外BIC 全介质超表面 光谱调制 FDTD仿真
作品介绍:
复现lunwen:2018年 Science:Imaging-based molecular barcoding with pixelated dielectric metasurfaces
lunwen介绍:中红外 全介质 硅纳米柱超表面模型,双椭圆纳米柱结构,通过打破对称角实现BIC共振效应。
定义了结构整体尺寸因子S,通过调节S比例因子,可以调节BIC超表面的共振峰平移,同时计算了不同对称角度theta下的共振峰Q值。
案例内容:主要包括双椭圆纳米柱的单元结构仿真,BIC超表面的共振场仿真以及对应的共振峰的仿真,共振Q值的计算脚本,以及透射峰随比例因子S变化的参数扫描脚本和Q值随theta变化的扫描脚本等
案例包括fdtd模型、参数扫描脚本、共振Q值计算脚本和BIC共振时局域场增强的仿真结果,以及一份word教程,BIC共振仿真和Q值计算可用于任意波段,具备可拓展性。

标题:中红外BIC全介质超表面的光谱调制与FDTD仿真

摘要:
本文旨在介绍并复现2018年Science杂志上发布的研究成果《Imaging-based molecular barcoding with pixelated dielectric metasurfaces》。该研究通过打破对称角度实现BIC共振效应,使用双椭圆纳米柱结构的全介质硅纳米柱超表面模型,通过调节尺寸因子S来调节BIC超表面的共振峰平移,并计算了不同对称角度theta下的共振峰Q值。本文案例包括双椭圆纳米柱的单元结构仿真、BIC超表面的共振场仿真及共振峰的仿真、共振Q值的计算脚本,以及透射峰随比例因子S变化和Q值随theta变化的参数扫描脚本等。这些案例都基于FDTD模型进行仿真,同时提供了BIC共振时局域场增强的仿真结果。此外,还提供了一份Word教程,详细介绍了BIC共振仿真和Q值计算的方法,可适用于任意波段,并具备可拓展性。所有案例均可开具发票,如需进一步咨询,请私信联系。

关键词:中红外BIC 全介质超表面 光谱调制 FDTD仿真

1. 引言
   1.1 研究背景
   1.2 文章的目的和结构

2. 中红外BIC全介质超表面的原理和模型介绍
   2.1 双椭圆纳米柱结构解析
   2.2 打破对称角度实现BIC共振效应
   2.3 结构整体尺寸因子S的调节和共振峰平移
   2.4 不同对称角度theta下的共振峰Q值计算

3. 中红外BIC全介质超表面的仿真案例
   3.1 双椭圆纳米柱的单元结构仿真
   3.2 BIC超表面的共振场仿真
   3.3 共振峰的仿真及其与尺寸因子S的关系
   3.4 共振Q值的计算脚本介绍

4. 参数扫描脚本应用
   4.1 透射峰随比例因子S变化的参数扫描脚本
   4.2 Q值随对称角度theta变化的扫描脚本

5. FDTD模型仿真结果分析
   5.1 BIC共振时局域场增强的仿真结果展示
   5.2 结果分析与讨论

6. Word教程:BIC共振仿真和Q值计算方法详解
   6.1 BIC共振仿真流程讲解
   6.2 Q值计算方法介绍

7. 结论
   7.1 本文总结和思考
   7.2 后续工作展望

参考资料:
(本文不提供参考文献和参考资料,请理解)

相关代码,程序地址:http://imgcs.cn/lanzoun/739720832598.html
 

### 关于BIC超表面FDTD仿真中的实现与应用 #### 3.1 双椭圆纳米柱的单元结构仿真 为了研究双椭圆纳米柱结构特性,在FDTD仿真环境中构建了该几何模型。此结构由硅材料制成,具有特定的高度和宽度参数。通过调整这些参数,可以改变其光学响应性能。当对称性被破坏时,即两个椭圆形不再完相同,则会出现束缚态(Bound States in the Continuum, BIC)现象[^2]。 #### 3.2 BIC超表面的共振场仿真 采用有限差分时域法(Finite-Difference Time-Domain,FDTD),能够精确描述电磁波如何与上述提到的双椭圆纳米柱相互作用并形成局部化的电场强度分布模式——这就是所谓的BIC状态。这种状态下产生的高密度能量集中区域对于提高传感器灵敏度等方面有着重要意义[^1]。 #### 3.3 共振峰的仿真及其与尺寸因子S的关系 定义了一个新的变量称为“整体尺寸因子\( S \)”用来表征整个系统的相对大小关系;随着这个比例系数的变化,观察到相应的共振频率也会发生位移。这表明我们可以通过简单地缩放物理尺度来调控所需的工作频段范围内的表现形式。 ```matlab % MATLAB代码片段:计算不同尺寸因子下共振位置偏移量 for s = linspace(0.9, 1.1, num_points) % 更新当前迭代使用的几何参数... % 运行一次完整的FDTD模拟过程 % 获取此次实验所得数据点,并记录下来作为后续绘图依据之一 end ``` #### 3.4 共振Q值的计算脚本介绍 针对每一个给定条件组合(比如不同的入射角度θ),编写了一套专门用于评估品质因数(Q factor) 的Python脚本来处理原始输出文件中提取出来的信息。这种方法不仅提高了工作效率而且使得结果更加直观易懂。 ```python import numpy as np from scipy.optimize import curve_fit def lorentzian(x, amplitude, center, width): """洛伦兹线型拟合函数""" return (amplitude * ((width / 2)**2)) / (((x - center)**2) + (width/2)**2) # 假设已经读取到了透射率曲线的数据存储在一个名为transmission_data的列表里 popt, _ = curve_fit(lorentzian, wavelengths, transmission_data) q_factor = popt[1]/popt[2] print(f"The Q-factor is {q_factor:.2f}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值