EEGnet模型论文讲解(画图详解三种卷积层操作)

我录了一个讲解视频:https://www.bilibili.com/video/BV1si4y1s7g7/

目录

一、整体介绍

二、梳理激活函数

三、图解三种卷积层   (核心内容)

四、总结


 

一、整体介绍

EEGnet是为专门一般的脑电图识别任务而设计的通用且紧凑的卷积神经网络。(设计思路借鉴了MobileNet)

下图是EEGnet的整体结构图,只有三个卷积模块,重点是depthwise conv 和separable conv这两个卷积模块。

表格表明了EEGnet的结构细节,可以看出下划红线和下划蓝线是EEGnet相对传统卷积神经网络特别的地方。

二、梳理激活函数

由于激活函数比较简单,所以先介绍一下激活函数。

传统激活函数发展 sigmoid -> tanh -> ReLU (目前最常用的激活函数)

ReLU函数的一些相关变种

EEGnet有使用ELU激活函数,其具有如ReLU的正值特性,所以一样可以缓解梯度消失问题,而ELU还有负值,可以让激活单元输出的均值更接近0,从而达到正则化的效果。且ELU的负值计算是指数函数,不会发生突变,所以对输入变化或噪声更鲁棒。(SELU输出的均值不但更接近0,其方差也更接近单位方差1,进一步达到正则化效果,提升收敛速度等)

线性激活Linear就等于只有神经元在进行计算,即y=Σ(X*W)+b

三、图解三种卷积层

1. Convolution—普通的卷积层操作

对于(shape5×5×3)的输入, 经过3×3卷积核的卷积层(假设输出通道数为4,则卷积核shape3×3×3×4,最终输出4Feature Map,假设卷积层的步长为1,那么如果padding方式valid那么输出尺寸变为3×3

卷积层共4filter,每个filter1bias参数,每个filter包含了3kernel,每个kernel的大小为3×3。

卷积层的参数数量计算:Parameters = 4 × 3 × 3 × 3 + 4  = 112

2. Depthwise Convolution—通道的卷积层操作

对于一张5×5像素、三通道(shape5×5×3)的输入, Depthwise Convolution是完全在二维平面内进行的卷积运算。卷积核的数量与上一层的通道数相同(通道和卷积核一一对应), 所以输出feature map的通道数目不变。

卷积层共3filter,每个filter1bias参数,每个filter包含了1kernel,每个kernel的大小为3×3。

卷积层的参数数量计算:Parameters = 3× 1 × 3 × 3 + 3  = 30。

评价:虽然这样显著减少了卷积层的参数数量,但是这种方法无法扩展Feature map,没有有效利用不同通道在相同空间位置上的feature信息

3. Pointwise Convolution逐点的卷积层操作

对于一张5×5像素、三通道的输入, Pointwise Convolution的卷积核大小固定为1×1,假设其输出通道为4,那么它的卷积核shape1×1×M×4M为上一层的通道数。所以这里的卷积运算会将上一步feature map在深度方向上进行加权组合。

卷积层共4filter,每个filter1bias参数,每个filter包含了3kernel,每个kernel的大小为1×1。

卷积层的参数数量计算:Parameters = 4× 3 × 1 × 1 + 4  = 16

评价:pointwise convolution可以扩展feature map的数目,还能将上一步生成的feature map在空间维度进行加权组合,正好弥补了Depthwise Convolution的两个缺点

四、总结

Depthwise Convolution的一个卷积核负责一个通道,即一个通道只被一个卷积核卷积。

Pointwise Convolution的卷积核的shape1×1×M×CM为上一层的通道数,C为卷积核的数目

EEGnet1个普通卷积conv + 1Depthwise conv + 1separable conv组成,

其中, separable Convolution(深度分离卷积层)由一个Depthwise Convolution和一个Pointwise Convolution组成。

 

参数量对比:

相同放入5×5像素、三通道的输入,普通卷积层和separable Convolution同样得到4Feature map

普通卷积层的参数量: 4 × 3 × 3 × 3 + 4  = 112

Depthwise conv的参数量 = 3× 1 × 3 × 3 + 3  = 30

Pointwise conv的参数量 = 4× 3 × 1 × 1 + 4  = 16

Separable conv的参数量 = Depthwise conv + Pointwise conv = 46

所以Separable Convolution可以显著减少卷积层的参数数量

 

个体内实验结果:

跨个体实验结果:

CovNeXt论文中的图主要包括两部分:Covolutional NeXt模块和CovNeXt网络结构。 Covolutional NeXt模块的图可以使用如下的代码进行绘制: ``` input_tensor = Input(shape=input_shape) x = input_tensor for i in range(nb_repeat): x = CovNeXtBlock(filters, kernel_size, cardinality, bottleneck_width, strides)(x) model = Model(inputs=input_tensor, outputs=x) ``` 其中,input_shape表示输入张量的形状,nb_repeat表示Covolutional NeXt模块需要重复的次数,filters表示卷积核的数量,kernel_size表示卷积核的大小,cardinality表示分组数量,bottleneck_width表示瓶颈层的宽度,strides表示卷积的步长。 CovNeXt网络结构的图可以使用如下的代码进行绘制: ``` input_tensor = Input(shape=input_shape) x = Conv2D(32, (3, 3), strides=(2, 2), padding='same')(input_tensor) x = BatchNormalization()(x) x = Activation('relu')(x) x = Conv2D(64, (3, 3), padding='same')(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x) for i in range(len(filters)): x = CovNeXtBlock(filters[i], kernel_size[i], cardinality[i], bottleneck_width[i], strides[i])(x) x = GlobalAveragePooling2D()(x) x = Dense(nb_classes, activation='softmax')(x) model = Model(inputs=input_tensor, outputs=x) ``` 其中,input_shape表示输入张量的形状,filters、kernel_size、cardinality、bottleneck_width和strides分别表示Covolutional NeXt模块的参数,nb_classes表示分类数量。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值