算法训练-骑士走棋盘

说明: 骑士旅游(Knight tour)在十八世纪初倍受数学家与拼图迷的注意,它什么时候被提出
已不可考,骑士的走法为西洋棋的走法,骑士可以由任一个位置出发,它要如何走完[所有的位
置?
解法骑士的走法,基本上可以使用递回来解决,但是纯綷的递回在维度大时相当没有效率,
一个聪明的解法由J.C. Warnsdorff在1823年提出,简单的说,先将最难的位置走完,接下来的路
就宽广了,骑士所要走的下一步,「为下一步再选择时,所能走的步数最少的一步。」,使用这个

方法,在不使用递回的情况下,可以有较高的机率找出走法(找不到走法的机会也是有的)。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 要解决这个问题,首先要知道西洋棋中骑士的走法,先横或竖1或2格,再竖或横2或1格,没有中国象棋蹩脚的限制。

用两个数组来表示骑士所有可能的走法为:

//对应骑士可走的八个方向
int ktmove1[8]={-2,-1,1,2,2,1,-1,-2};//相当于向左或者向右向上向下移动一格或者两格
int ktmove2[8]={1,2,2,1,-1,-2,-2,-1};//与上面相对应。

这两个数组元素上下对应,代表骑士可能的8种走法。

下面给出代码:

#include<stdio.h>
#include<iostream>
using namespace std;
//定义棋盘
int board[8][8]={0};
int travel(int x,int y);
int main()
{
	int startx,starty;
	int i,j;
	printf("输入起始点:");
	scanf("%d%d",&startx,&starty);

	if(travel(startx,starty))
	{
		printf("游历完成!\n");
	}
	else{
		printf("游历失败!\n");
	}
	for(i=0;i<8;i++)
	{
		for(j=0;j<8;j++)
		{
			cout<<board[i][j]<<" ";
		}
		putchar('\n');
	}
	return 0;
}
int travel(int x,int y)
{
	//对应骑士可走的八个方向
	int ktmove1[8]={-2,-1,1,2,2,1,-1,-2};//相当于向左或者向右向上向下移动一格或者两格
	int ktmove2[8]={1,2,2,1,-1,-2,-2,-1};//与上面相对应。

	//测试下一步的出路
	int nexti[8]={0};
	int nextj[8]={0};
	//记录出路的个数
	int exists[8]={0};
	int i,j,k,m,l;
	int tmpi,tmpj;

	int count,min,tmp;
	i=x;
	j=y;
	board[i][j]=1;//此时是第一步
	for(m=2;m<=64;m++)
	{
		for(l=0;l<8;l++)
			exists[l]=0;
		l=0;
		//试探八个方向
		for(k=0;k<8;k++)
		{
			tmpi=i+ktmove1[k];
			tmpj=j+ktmove2[k];

			//如果是边界了,不可以走
			if(tmpi<0||tmpj<0||tmpi>7||tmpj>7)
				continue;
			//如果方向可以走,记录下来这个可以走的方向.
			if(board[tmpi][tmpj]==0)
			{
				nexti[l]=tmpi;
				nextj[l]=tmpj;
				//可以走的方向加一个
				l++;
			}
		}
		count=l;
		if(count==0)//可以走的方向为0,返回
			return 0;
		else if(count==1){
			//只有一个可以走的方向,所以直接是最少出路的方向
			min=0;
		}
		else
		{
			//找出下一个位置的出路
			for(l=0;l<count;l++)
			{
				for(k=0;k<8;k++)
				{
					tmpi=nexti[l]+ktmove1[k];
					tmpj=nextj[l]+ktmove2[k];
					if(tmpi<0||tmpj<0||tmpi>7||tmpj>7)
						continue;
					if(board[tmpi][tmpj]==0)
						exists[l]++;//当前位置存在的出路数加一个
				}
			}
			tmp=exists[0];
			min=0;
			//从可走的方向中寻找最少出路的方向
			for(l=1;l<count;l++)
			{
				if(exists[l]<tmp)
				{
					tmp=exists[l];
					min=l;
				}
			}
		}
		//走最少出路的方向
		i=nexti[min];
		j=nextj[min];
		board[i][j]=m;
	}
	return 1;
}

运行如图:



数字代表从第一步到第64步的走法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值