说明:
骑士旅游(Knight tour)在十八世纪初倍受数学家与拼图迷的注意,它什么时候被提出
已不可考,骑士的走法为西洋棋的走法,骑士可以由任一个位置出发,它要如何走完[所有的位
置?
解法骑士的走法,基本上可以使用递回来解决,但是纯綷的递回在维度大时相当没有效率,
一个聪明的解法由J.C. Warnsdorff在1823年提出,简单的说,先将最难的位置走完,接下来的路
就宽广了,骑士所要走的下一步,「为下一步再选择时,所能走的步数最少的一步。」,使用这个
运行如图:
已不可考,骑士的走法为西洋棋的走法,骑士可以由任一个位置出发,它要如何走完[所有的位
置?
解法骑士的走法,基本上可以使用递回来解决,但是纯綷的递回在维度大时相当没有效率,
一个聪明的解法由J.C. Warnsdorff在1823年提出,简单的说,先将最难的位置走完,接下来的路
就宽广了,骑士所要走的下一步,「为下一步再选择时,所能走的步数最少的一步。」,使用这个
方法,在不使用递回的情况下,可以有较高的机率找出走法(找不到走法的机会也是有的)。
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
要解决这个问题,首先要知道西洋棋中骑士的走法,先横或竖1或2格,再竖或横2或1格,没有中国象棋蹩脚的限制。
用两个数组来表示骑士所有可能的走法为:
//对应骑士可走的八个方向
int ktmove1[8]={-2,-1,1,2,2,1,-1,-2};//相当于向左或者向右向上向下移动一格或者两格
int ktmove2[8]={1,2,2,1,-1,-2,-2,-1};//与上面相对应。
这两个数组元素上下对应,代表骑士可能的8种走法。
下面给出代码:
#include<stdio.h>
#include<iostream>
using namespace std;
//定义棋盘
int board[8][8]={0};
int travel(int x,int y);
int main()
{
int startx,starty;
int i,j;
printf("输入起始点:");
scanf("%d%d",&startx,&starty);
if(travel(startx,starty))
{
printf("游历完成!\n");
}
else{
printf("游历失败!\n");
}
for(i=0;i<8;i++)
{
for(j=0;j<8;j++)
{
cout<<board[i][j]<<" ";
}
putchar('\n');
}
return 0;
}
int travel(int x,int y)
{
//对应骑士可走的八个方向
int ktmove1[8]={-2,-1,1,2,2,1,-1,-2};//相当于向左或者向右向上向下移动一格或者两格
int ktmove2[8]={1,2,2,1,-1,-2,-2,-1};//与上面相对应。
//测试下一步的出路
int nexti[8]={0};
int nextj[8]={0};
//记录出路的个数
int exists[8]={0};
int i,j,k,m,l;
int tmpi,tmpj;
int count,min,tmp;
i=x;
j=y;
board[i][j]=1;//此时是第一步
for(m=2;m<=64;m++)
{
for(l=0;l<8;l++)
exists[l]=0;
l=0;
//试探八个方向
for(k=0;k<8;k++)
{
tmpi=i+ktmove1[k];
tmpj=j+ktmove2[k];
//如果是边界了,不可以走
if(tmpi<0||tmpj<0||tmpi>7||tmpj>7)
continue;
//如果方向可以走,记录下来这个可以走的方向.
if(board[tmpi][tmpj]==0)
{
nexti[l]=tmpi;
nextj[l]=tmpj;
//可以走的方向加一个
l++;
}
}
count=l;
if(count==0)//可以走的方向为0,返回
return 0;
else if(count==1){
//只有一个可以走的方向,所以直接是最少出路的方向
min=0;
}
else
{
//找出下一个位置的出路
for(l=0;l<count;l++)
{
for(k=0;k<8;k++)
{
tmpi=nexti[l]+ktmove1[k];
tmpj=nextj[l]+ktmove2[k];
if(tmpi<0||tmpj<0||tmpi>7||tmpj>7)
continue;
if(board[tmpi][tmpj]==0)
exists[l]++;//当前位置存在的出路数加一个
}
}
tmp=exists[0];
min=0;
//从可走的方向中寻找最少出路的方向
for(l=1;l<count;l++)
{
if(exists[l]<tmp)
{
tmp=exists[l];
min=l;
}
}
}
//走最少出路的方向
i=nexti[min];
j=nextj[min];
board[i][j]=m;
}
return 1;
}
运行如图:
数字代表从第一步到第64步的走法。