洛谷 T284709 怨念(resent)

PS:如果读过题了可以跳过题目描述直接到题解部分
提交链接:洛谷 T284709 怨念(resent)

题目

题目背景

“结束了。”dlh眼睁睁地看着右下角的时间到达13:00。屏幕上只留下一个 O ( n 2 ) O(n^2) O(n2) 的暴力。
这场考试成为了dlh的心理阴影,所以他今天要滥用出题人的权力,将这一不美好的回忆强加于你。

题目描述

现在你被迫解决根据dlh转化错的题意出的题:给定整数 n , k n,k n,k,对于每个 i ∈ [ 1 , n ] i\in[1,n] i[1,n],求满足下列条件的
整数数列 a a a 权值之和:
数列长度 ∣ a ∣ = i |a|=i a=i ,元素大小均在 [ 1 , n ] [1,n] [1,n] 中,且 a a a 中没有相同元素。
一个数列 a a a 的权值定义为 Π i = 1 ∣ a ∣ k a i \Pi _{i=1}^{|a|}k^{a_i} Πi=1akai
答案对 998244353 998244353 998244353 取模。

输入格式

一行两个正整数 n , k n,k n,k

输出格式

n n n 行,第 i i i 行一个正整数,表示 ∣ a ∣ = i |a|=i a=i 时的答案。

样例 #1

样例输入 #1

3 3

样例输出 #1

39
702
4374

样例 #2

样例输入 #2

20 4

样例输出 #2

592793496
665177021
954073671
15970570
751832606
243984599
387448346
418729740
223224628
604189073
211339162
523261611
196916730
586763100
706792305
194432676
664618102
203112049
922150155
823565468

提示

样例1解释

以长度 i = 2 i=2 i=2 为例,合法序列有 [ 1 , 2 ] , [ 1 , 3 ] , [ 2 , 3 ] , [ 2 , 1 ] , [ 3 , 1 ] , [ 3 , 2 ] [1,2],[1,3],[2,3],[2,1],[3,1],[3,2] [1,2],[1,3],[2,3],[2,1],[3,1],[3,2],权值分别为
27 , 81 , 243 , 27 , 81 , 243 27,81,243,27,81,243 27,81,243,27,81,243,和为 702 702 702

数据范围与提示

对于前 10 % 10\% 10% 的数据, n ≤ 20 n\le20 n20

对于前 40 % 40\% 40% 的数据, n ≤ 5000 n\le5000 n5000

对于前 70 % 70\% 70% 的数据, n ≤ 2 16 n\le 2^{16} n216

对于所有的数据, 1 ≤ n ≤ 5 × 1 0 6 , 0 < k < 998244353 1\le n\le 5\times 10^6,0<k<998244353 1n5×106,0<k<998244353

题解


代码实现

100pts

//洛谷 T284709 怨念(resent)
#pragma GCC optimize(3)
#include<iostream>
#include<cstdio>
using namespace std;
const int mo=998244353;
long long n,k,m;
long long p[5000010];//k^i
long long ikni;//inv(k^(n*i))
long long ikn;//inv(k^n)
long long kii;//k^(i*i)
long long iki;//inv(k^i)
long long ik;//inv(k)
long long a[5000010];//i!
long long b[5000010];//k^i-1的前缀积
long long ib[5000010];//k^i-1的逆元
long long so=1,ma=1;

void in(long long &x){
	int nt;
	x=0;
	while(!isdigit(nt=getchar()));
	x=nt^'0';
	while(isdigit(nt=getchar())){
		x=(x<<3)+(x<<1)+(nt^'0');
	}
}

long long mi(long long x,long long y){
	long long ans=1;
	while(y){
		if(y&1){
			ans=(ans*x)%mo;
		}
		x=(x*x)%mo;
		y>>=1;
	}
	return ans;
}

int main(){
	in(n),in(k);
	k=mi(k,mo-2);
	ik=mi(k,mo-2);
	p[0]=1;
	a[0]=1;
	b[0]=1;
	for(m=1;m<=n;++m){
		p[m]=p[m-1]*k%mo;
		b[m]=(b[m-1]*(p[m]-1))%mo;
		a[m]=a[m-1]*m%mo;
	}
	ikn=mi(p[n],mo-2);
	ib[n]=mi(b[n],mo-2);
	for(m=n-1;m>=1;--m){
		ib[m]=ib[m+1]*(p[m+1]-1)%mo;
	}
	for(m=1;m<=n;++m){
		ib[m]=ib[m]*b[m-1]%mo; 
	}
	//给ib赋值
	ikni=1;
	kii=1;
	iki=1;
	for(m=1;m<=n;++m){
		ikni=ikni*ikn%mo;
		so=so*(p[n]-p[m-1])%mo;//累计分子
		ma=ma*iki%mo*ib[m]%mo;//累计分母
		iki=iki*ik%mo;
		printf("%lld\n",(so*ma%mo*ikni%mo*kii%mo+mo)*a[m]%mo);
		kii=kii*p[m]%mo;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

月半流苏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值