Python 数据分析练习1:美国人口数据分析

需求:导入文件,查看原始数据,将美国各州人口数据和简称合并,去掉重复的一列。合并各州面积数据,找到2010年的全民人口数据,计算各州的人口密度,排序,找到人口密度最高的州。

链接:https://pan.baidu.com/s/1VmWnvVkgL0QalnoCrQCEfg
提取码:qgxu

表1:州名和简称

 表2:各州各时间、各年龄段人口

 表3:各州面积

 ----------------------------------------------------

 ----------------------------------------------------

 ----------------------------------------------------

import pandas as pd


df_abbrevs = pd.read_csv("state-abbrevs.csv")
df_population = pd.read_csv("state-population.csv")
df_usa = pd.merge(df_abbrevs, df_population, left_on="abbreviation", right_on="state/region")
print(df_usa)
df_usa = df_usa.drop("abbreviation", axis=1)
print(df_usa)
df_area = pd.read_csv("state-areas.csv")
df_usa = pd.merge(df_usa, df_area, on="state")
print(df_usa)
df_usa_2010 = df_usa[df_usa.loc[:, "year"] == 2010].loc[:,["state", "population", "area (sq. mi)"]]
print(df_usa_2010)
df_usa_2010 = pd.pivot_table(df_usa_2010, index="state", values=["population", "area (sq. mi)"], aggfunc="sum")
df_usa_2010["area (sq. mi)"] = df_usa_2010["area (sq. mi)"]/2
df_usa_2010["density"] = df_usa_2010.apply(lambda x: x["population"] / x["area (sq. mi)"], axis=1)
print(df_usa_2010)
df_usa_2010 = df_usa_2010.sort_values(by="density", axis=0)
print(df_usa_2010)
df_usa_2010.iloc[-1, :]
print(df_usa_2010)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hinomoto Oniko

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值