Python 机器学习8:sklearn 聚类算法

1. K-Means算法是一种广泛使用的聚类算法。

from sklearn.cluster import KMeans

K-Means是聚焦于相似的无监督的算法,以距离作为数据对象间相似性度量的标准,即数据对象间的距离越小,则它们的相似性越高,则它们越有可能在同一个类。K值指的是把数据划分成多少个类别。

算法步骤:随机设置K个特征空间内的点作为初始的聚类中心。对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别。接着,对着标记的聚类中心之后,重新计算出每个聚类的新中心点(平均值)。如果计算得出的新中心点与原中心点一样,那么结束,否则重新进行第二步过程。

KMeans(n_clusters=8,init=‘k-means++’)

参数:

n_clusters:开始的聚类中心数量

init:初始化方法,默认为k-means++

例:用户对物品类别的喜好分类

需求:将PCA案例中用户数据特征(商品信息、订单与商品信息、用户的订单信息、商品所属具体物品类别)使用K-Means进行分类。

链接:https://pan.baidu.com/s/1THkh7j3-PH7HoZbwxVnmTg
提取码:51d7

products.csv 商品信息

order_products__prior.csv 订单与商品信息

orders.csv 用户的订单信息

aisles.csv 商品所属具体物品类别

 

import pandas as pd
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
from sklearn.metrics import silhouette_score
# 读取四张表的数据
prior = pd.read_csv("order_products__prior.csv")
products = pd.read_csv("products.csv")
orders = pd.read_csv("orders.csv")
aisles = pd.read_csv("aisles.csv")
# 合并四张表到一张表  (用户-物品类别)
_mg = pd.merge(prior, products, on=['product_id', 'product_id'])
_mg = pd.merge(_mg, orders, on=['order_id', 'order_id'])
mt = pd.merge(_mg, aisles, on=['aisle_id', 'aisle_id'])
cross = pd.crosstab(mt['user_id'], mt['aisle'])
# 进行主成分分析
pca = PCA(n_components=0.9)
x = pca.fit_transform(cross)
# 假设用户一共分为四个类别
km = KMeans(n_clusters=4)
km.fit(x)
predict = km.predict(x)
print(predict)
# 显示聚类的结果
plt.figure(figsize=(10, 10))
# 建立四个颜色的列表
colored = ['orange', 'green', 'blue', 'purple']
colr = [colored[i] for i in predict]
plt.scatter(x[:, 1], x[:, 20], color=colr)
plt.xlabel("1")
plt.ylabel("20")
plt.show()

输出:

[3 0 3 ... 0 2 3]

聚类性能评估指标:轮廓系数

from sklearn.metrics import silhouette_score

 

对于每个点i为已聚类数据中的样本,bi为i到其它族群的所有样本的平均距离,ai为i到本身簇的距离平均值,最终计算出所有的样本点的轮廓系数平均值。

如果sci小于0,说明ai的平均距离大于最近的其他簇。 聚类效果不好。

如果sci越大,说明ai的平均距离小于最近的其他簇。 聚类效果好。

轮廓系数的值是介于 [-1,1] ,越趋近于1代表内聚度和分离度都相对较优。

计算上面用户消费案例的轮廓系数:

# 评判聚类效果,轮廓系数
print(silhouette_score(x, predict))

sklearn.metrics.silhouette_score(X, labels) 计算所有样本的平均轮廓系数

参数:

X:特征值

labels:被聚类标记的目标值

输出:

0.43602642864601127

K-Means的优点:采用迭代式算法,直观易懂并且非常实用

K-Means的缺点:容易收敛到局部最优解;需要预先设定簇的数量(解决方法分别可以是:多次聚类、K-means++)。

本程序是在python中完成,基于sklearn.cluster中的k-means聚类包来实现数据的聚类,对于里面使用的数据格式如下:(注意更改程序中的相关参数) 138 0 124 1 127 2 129 3 119 4 127 5 124 6 120 7 123 8 147 9 188 10 212 11 229 12 240 13 240 14 241 15 240 16 242 17 174 18 130 19 132 20 119 21 48 22 37 23 49 0 42 1 34 2 26 3 20 4 21 5 23 6 13 7 19 8 18 9 36 10 25 11 20 12 19 13 19 14 5 15 29 16 22 17 13 18 46 19 15 20 8 21 33 22 41 23 69 0 56 1 49 2 40 3 52 4 62 5 54 6 32 7 38 8 44 9 55 10 70 11 74 12 105 13 107 14 56 15 55 16 65 17 100 18 195 19 136 20 87 21 64 22 77 23 61 0 53 1 47 2 33 3 34 4 28 5 41 6 40 7 38 8 33 9 26 10 31 11 31 12 13 13 17 14 17 15 25 16 17 17 17 18 14 19 16 20 17 21 29 22 44 23 37 0 32 1 34 2 26 3 23 4 25 5 25 6 27 7 30 8 25 9 17 10 12 11 12 12 12 13 7 14 6 15 6 16 12 17 12 18 39 19 34 20 32 21 34 22 35 23 33 0 57 1 81 2 77 3 68 4 61 5 60 6 56 7 67 8 102 9 89 10 62 11 57 12 57 13 64 14 62 15 69 16 81 17 77 18 64 19 62 20 79 21 75 22 57 23 73 0 88 1 75 2 70 3 77 4 73 5 72 6 76 7 76 8 74 9 98 10 90 11 90 12 85 13 79 14 79 15 88 16 88 17 81 18 84 19 89 20 79 21 68 22 55 23 63 0 62 1 58 2 58 3 56 4 60 5 56 6 56 7 58 8 56 9 65 10 61 11 60 12 60 13 61 14 65 15 55 16 56 17 61 18 64 19 69 20 83 21 87 22 84 23 41 0 35 1 38 2 45 3 44 4 49 5 55 6 47 7 47 8 29 9 14 10 12 11 4 12 10 13 9 14 7 15 7 16 11 17 12 18 14 19 22 20 29 21 23 22 33 23 34 0 38 1 38 2 37 3 37 4 34 5 24 6 47 7 70 8 41 9 6 10 23 11 4 12 15 13 3 14 28 15 17 16 31 17 39 18 42 19 54 20 47 21 68 22
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hinomoto Oniko

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值