本文将从多个方面详细阐述Python数据实战项目,包括数据处理、数据分析和数据可视化等方面。
一、数据处理
1、数据清洗
数据清洗是数据处理的首要步骤,它包括去除无效数据、填充缺失值和处理异常值等。以下是一个示例代码:
import pandas as pd # 读取数据 data = pd.read_csv('data.csv') # 去除无效数据 data = data.dropna() # 填充缺失值 data['age'].fillna(data['age'].mean(), inplace=True) # 处理异常值 data['salary'] = data['salary'].apply(lambda x: 10000 if x < 0 else x)
2、数据转换
数据转换是将原始数据转换为可分析的格式,比如将日期字符串转换为日期类型。以下是一个示例代码:
import pandas as pd # 读取数据 data = pd.read_csv('data.csv') # 转换日期格式 data['date'] = pd.to_datetime(data['date'])
二、数据分析
1、数据统计
数据统计是对数据进行整体性分析,包括平均值、中位数、标准差等统计量的计算。以下是一个示例代码:
import pandas as pd # 读取数据 data = pd.read_csv('data.csv') # 计算平均值 mean = data['value'].mean() # 计算中位数 median = data['valu