漫谈采样定理

采样定理

前言

之前写了一下采样和量化,但是并没有对采样定理进行说明,所以这里简单聊聊

假设

我们假设有一个待采样的连续时间信号 x ( t ) x(t) x(t),采样频率为 f s f_s fs

有一个周期冲激串 p ( t ) p(t) p(t),称为采样函数,周期 T T T称为采样周期

其中 p ( t ) p(t) p(t)的基波频率 w s = w π / T w_s=w\pi/T ws=wπ/T称为采样频率

时域中就有 x p ( t ) = x ( t ) p ( t ) x_p(t)=x(t)p(t) xp(t)=x(t)p(t)

其中 p ( t ) = ∑ n = − ∞ + ∞ δ ( t − n T ) p(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT) p(t)=n=+δ(tnT)

采样定理

我们可以知道, x p ( t ) x_p(t) xp(t)是一个周期冲激串,其基波频率为 w s = w π / T w_s=w\pi/T ws=wπ/T,冲激幅度就是x(t)在以T为间隔处的样本值,即

x p ( t ) = ∑ n = − ∞ ∞ x ( n T ) δ ( t − n T ) x_p(t)=\sum_{n=-\infty}^{\infty}x(nT)\delta(t-nT) xp(t)=n=x(nT)δ(tnT)

我们知道,时域中的成绩在频域中是卷积,所以我们知道:

X p ( j ω ) = 1 2 π ∫ − ∞ + ∞ X ( j ω ) P ( j ( ω − θ ) )   d θ X_p(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) P(j(\omega - \theta)) \, d\theta Xp()=2π1+X()P(j(ωθ))dθ

我们知道冲激串 p ( t ) p(t) p(t) 的傅里叶变换是另一个冲激串:
P ( j ω ) = 2 π T ∑ k = − ∞ + ∞ δ ( ω − k ω s ) P(j\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta(\omega - k\omega_s) P()=T2πk=+δ(ωkωs)
其中 ω s = 2 π T \omega_s = \frac{2\pi}{T} ωs=T2π

代入 P ( j ( ω − θ ) ) P(j(\omega - \theta)) P(j(ωθ)) 的表达式:
P ( j ( ω − θ ) ) = 2 π T ∑ k = − ∞ + ∞ δ ( ( ω − θ ) − k ω s ) P(j(\omega - \theta)) = \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta((\omega - \theta) - k\omega_s) P(j(ωθ))=T2πk=+δ((ωθ)kωs)

所以,卷积表达式变为:
X p ( j ω ) = 1 2 π ∫ − ∞ + ∞ X ( j θ ) ( 2 π T ∑ k = − ∞ + ∞ δ ( ( ω − θ ) − k ω s ) ) d θ X_p(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) \left( \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta((\omega - \theta) - k\omega_s) \right) d\theta Xp()=2π1+X(jθ)(T2πk=+δ((ωθ)kωs))dθ

根据冲激函数的性质:
∫ − ∞ + ∞ f ( θ ) δ ( θ − θ 0 ) d θ = f ( θ 0 ) \int_{-\infty}^{+\infty} f(\theta) \delta(\theta - \theta_0) d\theta = f(\theta_0) +f(θ)δ(θθ0)dθ=f(θ0)

在我们的卷积表达式中,每个 δ ( ( ω − θ ) − k ω s ) \delta((\omega - \theta) - k\omega_s) δ((ωθ)kωs) 会采样 X ( j θ ) X(j\theta) X(jθ) θ = ω − k ω s \theta = \omega - k\omega_s θ=ωkωs 的值。由于 δ ( ( ω − θ ) − k ω s ) \delta((\omega - \theta) - k\omega_s) δ((ωθ)kωs) 只有在 θ = ω − k ω s \theta = \omega - k\omega_s θ=ωkωs 时才为非零,因此我们可以直接替换:

X p ( j ω ) = 1 2 π ∑ k = − ∞ + ∞ 2 π T X ( j ( ω − k ω s ) ) X_p(j\omega) = \frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} \frac{2\pi}{T} X(j(\omega - k\omega_s)) Xp()=2π1k=+T2πX(j(ωkωs))

简化得到:
X p ( j ω ) = 1 T ∑ k = − ∞ + ∞ X ( j ( ω − k ω s ) ) X_p(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X(j(\omega - k\omega_s)) Xp()=T1k=+X(j(ωkωs))

因此,通过利用冲激函数的采样性质,我们得到了采样信号 x p ( t ) x_p(t) xp(t) 在频域中的表示:
X p ( j ω ) = 1 T ∑ k = − ∞ + ∞ X ( j ( ω − k ω s ) ) X_p(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X(j(\omega - k\omega_s)) Xp()=T1k=+X(j(ωkωs))

我们最后化简后,可以得知 X p ( j ω ) X_p(j\omega) Xp()是频率为 ω \omega ω的周期函数,它由一组 X ( j ω ) X(j\omega) X() 的周期函数组成,周期为 T T T

采样定理总结

采样定理

x ( t ) x(t) x(t) 是某一个带限信号,在 ∣ ω ∣ > ω M |\omega| > \omega_M ω>ωM 时, X ( j ω ) = 0 X(j\omega) = 0 X()=0 。如果 ω s > 2 ω M \omega_s > 2\omega_M ωs>2ωM,其中 ω s = 2 π T \omega_s = \frac{2\pi}{T} ωs=T2π,那么 x ( t ) x(t) x(t) 就唯一地由其样本 x ( n T ) x(nT) x(nT) n = 0 , ± 1 , ± 2 , … n = 0, \pm 1, \pm 2, \ldots n=0,±1,±2, 所确定。

已知这些样本值,我们能用如下方法重建 x ( t ) x(t) x(t):产生一个周期冲激串,其冲激幅度就是这些依次而来的样本值;然后将该冲激串通过一个增益为 T T T, 截止频率大于 ω M \omega_M ωM 而小于 ω s − ω M \omega_s - \omega_M ωsωM 的理想低通滤波器,该滤波器的输出就是 x ( t ) x(t) x(t)

在采样定理中,采样频率必须大于 2 ω M 2\omega_M 2ωM,否则 x ( t ) x(t) x(t) 无法被唯一地重建。该频率称为 x ( t ) x(t) x(t) 的奈奎斯特频率。

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值