[信号与系统]IIR滤波器与FIR滤波器的表达、性质以及一些分析

前言

阅读本文需要阅读一些前置知识

[信号与系统]傅里叶变换、卷积定理、和为什么时域的卷积等于频域相乘。

[信号与系统]有关滤波器的一些知识背景

[信号与系统]关于LTI系统的转换方程、拉普拉斯变换和z变换

[信号与系统]关于双线性变换

IIR滤波器的数学表达式

IIR(Infinite Impulse Response)滤波器的输出信号 y [ n ] y[n] y[n] 可以用输入信号 x [ n ] x[n] x[n] 和滤波器系数表示为线性常系数差分方程:

y [ n ] = − ∑ k = 1 N a k y [ n − k ] + ∑ k = 0 M b k x [ n − k ] y[n] = -\sum_{k=1}^{N} a_k y[n-k] + \sum_{k=0}^{M} b_k x[n-k] y[n]=k=1Naky[nk]+k=0Mbkx[nk]

其中:

  • y [ n ] y[n] y[n] 是滤波器的输出信号。
  • x [ n ] x[n] x[n] 是滤波器的输入信号。
  • a k a_k ak b k b_k bk 是滤波器的系数。
  • N N N 是输出信号的反馈项数。
  • M M M 是输入信号的前馈项数。

传递函数

IIR滤波器的传递函数 H ( z ) H(z) H(z) 是输入信号的Z变换 X ( z ) X(z) X(z) 与输出信号的Z变换 Y ( z ) Y(z) Y(z) 之比:

H ( z ) = Y ( z ) X ( z ) = ∑ k = 0 M b k z − k 1 + ∑ k = 1 N a k z − k H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}} H(z)=X(z)Y(z)=1+k=1Nakzkk=0Mbkzk

数学性质

  1. 因果性 (Causality):

    • IIR滤波器通常是因果的,即输出信号在当前时刻只依赖于当前及过去的输入和输出信号。
    • 数学上,如果系统的传递函数 H ( z ) H(z) H(z) 在单位圆外是有界的,则该系统是因果的。
  2. 稳定性 (Stability):

    • IIR滤波器的稳定性取决于系统的极点。如果所有极点都位于单位圆内(即 ∣ z ∣ < 1 |z| < 1 z<1),则系统是稳定的。
    • 数学上,如果传递函数 H ( z ) H(z) H(z) 在单位圆内收敛,则系统是稳定的。
  3. 频率响应 (Frequency Response):

    • IIR滤波器的频率响应 H ( e j ω ) H(e^{j\omega}) H(e) 是通过将 z z z 替换为 e j ω e^{j\omega} e 得到的:
      H ( e j ω ) = ∑ k = 0 M b k e − j ω k 1 + ∑ k = 1 N a k e − j ω k H(e^{j\omega}) = \frac{\sum_{k=0}^{M} b_k e^{-j\omega k}}{1 + \sum_{k=1}^{N} a_k e^{-j\omega k}} H(e)=1+k=1Nakejωkk=0Mbkejωk
    • 频率响应描述了系统对不同频率成分的响应。
  4. 无限冲激响应 (Infinite Impulse Response):

    • IIR滤波器的冲激响应 h [ n ] h[n] h[n] 是无限长的,即 h [ n ] h[n] h[n] 不会在有限时间内变为零。
    • 数学上,如果系统的冲激响应 h [ n ] h[n] h[n] 对于所有 n n n 都不为零,则为IIR滤波器。

总结

IIR滤波器通过反馈和前馈项的结合,能够实现复杂的频率响应特性。其数学表达式和性质对于分析和设计滤波器非常重要。IIR滤波器广泛应用于信号处理和通信系统中,因其能用较少的滤波器阶数实现较高的选择性和稳定性。

FIR滤波器的数学表达式

FIR(Finite Impulse Response)滤波器的输出信号 y [ n ] y[n] y[n] 可以用输入信号 x [ n ] x[n] x[n] 和滤波器系数表示为线性常系数差分方程:

y [ n ] = ∑ k = 0 M b k x [ n − k ] y[n] = \sum_{k=0}^{M} b_k x[n-k] y[n]=k=0Mbkx[nk]

其中:

  • y [ n ] y[n] y[n] 是滤波器的输出信号。
  • x [ n ] x[n] x[n] 是滤波器的输入信号。
  • b k b_k bk 是滤波器的系数。
  • M M M 是滤波器的阶数。

传递函数

FIR滤波器的传递函数 H ( z ) H(z) H(z) 是输入信号的Z变换 X ( z ) X(z) X(z) 与输出信号的Z变换 Y ( z ) Y(z) Y(z) 之比:

H ( z ) = Y ( z ) X ( z ) = ∑ k = 0 M b k z − k H(z) = \frac{Y(z)}{X(z)} = \sum_{k=0}^{M} b_k z^{-k} H(z)=X(z)Y(z)=k=0Mbkzk

数学性质

  1. 因果性 (Causality):

    • FIR滤波器通常是因果的,即输出信号在当前时刻只依赖于当前及过去的输入信号。
    • 数学上,如果系统的传递函数 H ( z ) H(z) H(z) 在单位圆外是有界的,则该系统是因果的。
  2. 稳定性 (Stability):

    • FIR滤波器是稳定的,因为其冲激响应是有限长度的,不存在反馈。
  3. 线性相位 (Linear Phase):

    • FIR滤波器可以设计成具有线性相位响应,即不同频率成分通过滤波器时相位延迟是线性的。这对于避免信号失真非常重要。
  4. 频率响应 (Frequency Response):

    • FIR滤波器的频率响应 H ( e j ω ) H(e^{j\omega}) H(e) 是通过将 z z z 替换为 e j ω e^{j\omega} e 得到的:
      H ( e j ω ) = ∑ k = 0 M b k e − j ω k H(e^{j\omega}) = \sum_{k=0}^{M} b_k e^{-j\omega k} H(e)=k=0Mbkejωk
    • 频率响应描述了系统对不同频率成分的响应。
  5. 有限冲激响应 (Finite Impulse Response):

    • FIR滤波器的冲激响应 h [ n ] h[n] h[n] 是有限长的,即在有限时间内变为零。
    • 数学上,如果系统的冲激响应 h [ n ] h[n] h[n] 对于 n > M n > M n>M 都为零,则为FIR滤波器。

总结

FIR滤波器通过前馈项的组合,能够实现预期的频率响应特性。其数学表达式和性质对于分析和设计滤波器非常重要。FIR滤波器广泛应用于信号处理和通信系统中,因其固有的稳定性和可以实现的线性相位特性,使得它们特别适用于对相位响应有严格要求的应用。

一些分析

1. IIR滤波器的冲激响应

IIR滤波器的冲激响应 h [ n ] h[n] h[n] 是无限长的,这意味着当一个冲激输入(即单位脉冲信号 δ [ n ] \delta[n] δ[n])应用于IIR滤波器时,滤波器的输出会持续无限长的时间。其数学表达式为:

y [ n ] = − ∑ k = 1 N a k y [ n − k ] + ∑ k = 0 M b k x [ n − k ] y[n] = -\sum_{k=1}^{N} a_k y[n-k] + \sum_{k=0}^{M} b_k x[n-k] y[n]=k=1Naky[nk]+k=0Mbkx[nk]

当输入信号 x [ n ] = δ [ n ] x[n] = \delta[n] x[n]=δ[n] 时,输出信号 y [ n ] = h [ n ] y[n] = h[n] y[n]=h[n] 是系统的冲激响应。由于IIR滤波器具有反馈项(即包含前几个输出 y [ n − k ] y[n-k] y[nk]),这些反馈项会使得冲激响应在理论上永远不会完全衰减至零。

2. FIR滤波器的冲激响应

FIR滤波器的冲激响应 h [ n ] h[n] h[n] 是有限长的,这意味着当一个冲激输入(即单位脉冲信号 δ [ n ] \delta[n] δ[n])应用于FIR滤波器时,滤波器的输出在有限时间内变为零。其数学表达式为:

y [ n ] = ∑ k = 0 M b k x [ n − k ] y[n] = \sum_{k=0}^{M} b_k x[n-k] y[n]=k=0Mbkx[nk]

当输入信号 x [ n ] = δ [ n ] x[n] = \delta[n] x[n]=δ[n] 时,输出信号 y [ n ] = h [ n ] y[n] = h[n] y[n]=h[n] 是系统的冲激响应。由于FIR滤波器只包含输入信号的前馈项(即没有前几个输出 y [ n − k ] y[n-k] y[nk] 的反馈项),冲激响应在有限时间内(即在 M M M 个采样点之后)会变为零。

数学性质

IIR滤波器的冲激响应
  1. 无限长: IIR滤波器的冲激响应 h [ n ] h[n] h[n] 在理论上是无限长的,因为其反馈结构会导致输出信号持续无限时间。
  2. 数学上:
    h [ n ] = ∑ k = 0 M b k δ [ n − k ] − ∑ k = 1 N a k h [ n − k ] h[n] = \sum_{k=0}^{M} b_k \delta[n-k] - \sum_{k=1}^{N} a_k h[n-k] h[n]=k=0Mbkδ[nk]k=1Nakh[nk]
    由于存在反馈项 a k h [ n − k ] a_k h[n-k] akh[nk],冲激响应不会在有限时间内变为零。
FIR滤波器的冲激响应
  1. 有限长: FIR滤波器的冲激响应 h [ n ] h[n] h[n] 是有限长的,因为其前馈结构没有反馈项,导致输出信号在有限时间内变为零。
  2. 数学上:
    h [ n ] = ∑ k = 0 M b k δ [ n − k ] h[n] = \sum_{k=0}^{M} b_k \delta[n-k] h[n]=k=0Mbkδ[nk]
    由于没有反馈项,冲激响应在 n > M n > M n>M 时会变为零。

群延迟(Group Delay)

是指信号中不同频率分量通过滤波器时的相位延迟差异。它表示为:

τ g ( ω ) = − d θ ( ω ) d ω \tau_g(\omega) = -\frac{d\theta(\omega)}{d\omega} τg(ω)=dωdθ(ω)

其中, θ ( ω ) \theta(\omega) θ(ω) 是滤波器的相位响应。

相位响应 是指滤波器对信号不同频率分量引入的相位变化。线性相位响应意味着所有频率分量被等相位延迟处理,保持了信号波形的形状。

IIR滤波器

具有反馈结构,其数学形式为:

y [ n ] = ∑ k = 0 M b k x [ n − k ] − ∑ k = 1 N a k y [ n − k ] y[n] = \sum_{k=0}^{M} b_k x[n-k] - \sum_{k=1}^{N} a_k y[n-k] y[n]=k=0Mbkx[nk]k=1Naky[nk]

由于反馈项( ∑ k = 1 N a k y [ n − k ] \sum_{k=1}^{N} a_k y[n-k] k=1Naky[nk]),IIR滤波器的相位响应通常是非线性的。这是因为反馈会引入复杂的极点分布,导致相位响应不是线性的,进而导致群延迟不恒定,形成非线性相位偏移。

FIR滤波器

FIR滤波器 具有有限冲激响应,其数学形式为:

y [ n ] = ∑ k = 0 M b k x [ n − k ] y[n] = \sum_{k=0}^{M} b_k x[n-k] y[n]=k=0Mbkx[nk]

FIR滤波器没有反馈项,仅依赖于输入信号的有限个样本。通过适当设计滤波器系数 b k b_k bk,可以实现线性相位响应,即:

θ ( ω ) = − τ ω \theta(\omega) = -\tau \omega θ(ω)=τω

其中, τ \tau τ 是常数。这意味着群延迟 τ g ( ω ) \tau_g(\omega) τg(ω) 为常数,所有频率分量都具有相同的相位延迟,保持信号的波形不失真。

举个例子

考虑一个简单的一阶IIR低通滤波器

H ( z ) = 1 − 0.5 z − 1 1 − 0.3 z − 1 H(z) = \frac{1 - 0.5z^{-1}}{1 - 0.3z^{-1}} H(z)=10.3z110.5z1

相位响应和群延迟(非线性)如下:

θ ( ω ) ≈ − ω ( 0.3 1 − 0. 3 2 ) \theta(\omega) \approx -\omega \left( \frac{0.3}{1 - 0.3^2} \right) θ(ω)ω(10.320.3)

τ g ( ω ) = − d θ ( ω ) d ω \tau_g(\omega) = -\frac{d\theta(\omega)}{d\omega} τg(ω)=dωdθ(ω)

考虑一个简单的三阶FIR低通滤波器,具有对称系数:

H ( z ) = 0.25 + 0.5 z − 1 + 0.25 z − 2 H(z) = 0.25 + 0.5z^{-1} + 0.25z^{-2} H(z)=0.25+0.5z1+0.25z2

相位响应和群延迟(线性)如下:

θ ( ω ) = − ω ( 3 2 ) \theta(\omega) = -\omega \left( \frac{3}{2} \right) θ(ω)=ω(23)

τ g ( ω ) = d θ ( ω ) d ω = 3 2 \tau_g(\omega) = \frac{d\theta(\omega)}{d\omega} = \frac{3}{2} τg(ω)=dωdθ(ω)=23

  • 9
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值