在多分类单标签任务中,常使用CrossEntropyLoss作为损失函数,而使用softmax作为对应的最后一层的激活函数。
在Pytorch中,nn.CrossEntropyLoss中已经实现了softmax功能,因此在分类任务的最后一层fc后不需要加入softmax激活函数。因为在计算损失函数时,nn.CrossEntropyLoss函数会自动先将模型输出作一个softmax计算,再与ground truth作损失比较。
参考:
Pytorch中CrossEntropyLoss的使用与softmax结合解析
在多分类单标签任务中,通常使用CrossEntropyLoss作为损失函数,并配合softmax进行概率计算。Pytorch的nn.CrossEntropyLoss模块已经内置了softmax功能,因此在模型的fc层后面不需要额外添加softmax激活函数。该函数会在计算损失时自动对模型输出进行softmax转换,然后与实际标签比较。理解这一机制对于有效构建和训练深度学习分类模型至关重要。
在多分类单标签任务中,常使用CrossEntropyLoss作为损失函数,而使用softmax作为对应的最后一层的激活函数。
在Pytorch中,nn.CrossEntropyLoss中已经实现了softmax功能,因此在分类任务的最后一层fc后不需要加入softmax激活函数。因为在计算损失函数时,nn.CrossEntropyLoss函数会自动先将模型输出作一个softmax计算,再与ground truth作损失比较。
参考:
1387
378

被折叠的 条评论
为什么被折叠?