pytorch中损失函数nn.CrossEntropyLoss与激活函数softmax的关系

Pytorch中CrossEntropyLoss的使用与softmax结合解析
在多分类单标签任务中,通常使用CrossEntropyLoss作为损失函数,并配合softmax进行概率计算。Pytorch的nn.CrossEntropyLoss模块已经内置了softmax功能,因此在模型的fc层后面不需要额外添加softmax激活函数。该函数会在计算损失时自动对模型输出进行softmax转换,然后与实际标签比较。理解这一机制对于有效构建和训练深度学习分类模型至关重要。

在多分类单标签任务中,常使用CrossEntropyLoss作为损失函数,而使用softmax作为对应的最后一层的激活函数。
在Pytorch中,nn.CrossEntropyLoss中已经实现了softmax功能,因此在分类任务的最后一层fc后不需要加入softmax激活函数。因为在计算损失函数时,nn.CrossEntropyLoss函数会自动先将模型输出作一个softmax计算,再与ground truth作损失比较。

参考:

  1. 交叉熵损失,softmax函数和 torch.nn.CrossEntropyLoss()中文
  2. Pytorch 关于nn.CrossEntropyLoss()与nn.BCEloss()以及nn.BCEWithLogitsLoss()的区别
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值