阿里云通义千问API是阿里云推出的一款基于超大规模语言模型的人工智能服务,它能够帮助开发者快速构建各种智能应用。下面将为您提供一份详尽的申请与使用指南。
一、了解通义千问API
通义千问API基于阿里云自主研发的超大规模语言模型,具备强大的语言理解与生成能力,广泛应用于聊天机器人、内容创作、知识问答等场景。
二、申请API Key
1)注册阿里云账号
如果您还没有阿里云账号,请先在阿里云官网注册。
2)访问DashScope控制台
登录阿里云账号后,访问DashScope控制台。
3)实名认证
根据页面提示完成实名认证,这是获取API Key的前提条件。
4)创建API Key
在控制台中创建新的API Key,记录下生成的Key,它将作为后续API调用的身份验证凭证。
三、安装DashScope SDK
1)选择开发语言
DashScope SDK支持Python和Java两种语言,根据您的开发需求选择相应的SDK。
2)安装Python SDK
如果使用Python开发,通过以下命令安装或更新SDK:
pip install dashscope --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
3)安装Java SDK
如果使用Java开发,请根据官方文档指引安装Java SDK。
四、配置API Key
1)设置环境变量
为安全起见,建议将API Key设置为环境变量,避免在代码中硬编码。
2)配置示例
以Python为例,您可以在.env
文件中添加以下内容:
DASHSCOPE_API_KEY=您的API_Key
五、编写客户端程序
1)导入SDK
根据开发语言导入相应的DashScope模块。
2)编写调用代码
使用申请到的API Key,编写客户端程序调用通义千问API。以下是Python和Java的示例代码:
-
Python示例:
from http import HTTPStatus import dashscope def call_with_messages(): messages = [ {'role': 'system', 'content': 'You are a helpful assistant.'}, {'role': 'user', 'content': '请介绍一下通义千问'} ] response = dashscope.Generation.call( dashscope.Generation.Models.qwen_turbo, messages=messages, result_format='message' ) if response.status_code == HTTPStatus.OK: print(response) else: print('Request id: %s, Status code: %s, error code: %s, error message: %s' % ( response.request_id, response.status_code, response.code, response.message )) if __name__ == '__main__': call_with_messages()
-
Java示例:
import java.util.ArrayList; import java.util.List; // 其他导入... public class Main { public static void callWithMessage() throws NoApiKeyException, ApiException, InputRequiredException { Generation gen = new Generation(); List<Message> messages = new ArrayList<>(); Message systemMsg = Message.builder() .role(Role.SYSTEM.getValue()) .content("You are a helpful assistant.") .build(); Message userMsg = Message.builder() .role(Role.USER.getValue()) .content("请介绍一下通义千问") .build(); messages.add(systemMsg); messages.add(userMsg); GenerationParam param = GenerationParam.builder() .model(Generation.Models.QWEN_TURBO) .messages(messages) .resultFormat(GenerationParam.ResultFormat.MESSAGE) .build(); GenerationResult result = gen.call(param); System.out.println(JsonUtils.toJson(result)); } public static void main(String[] args){ try { callWithMessage(); } catch (ApiException | NoApiKeyException | InputRequiredException e) { System.out.println(e.getMessage()); } System.exit(0); } }
这些示例展示了如何通过messages方式调用通义千问大模型。
六、测试API调用
1)运行客户端程序
执行您的客户端程序,检查是否能够成功接收API响应。
2)验证返回结果
检查API返回的结果是否符合预期,确保集成正确。
七、注意事项
- 妥善保管API Key,避免泄露给未授权的人员。
- 定期检查账户余额,确保服务不中断。
- 遵循通义千问API的使用条款和限制。
通过上述步骤,您已经掌握了如何申请和使用阿里云通义千问API。
最后
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频,免费分享!
一、大模型全套的学习路线
L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署
达到L4级别也就意味着你具备了在大多数技术岗位上胜任的能力,想要达到顶尖水平,可能还需要更多的专业技能和实战经验。
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、大模型经典PDF书籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人在大模型时代,需要不断提升自己的技术和认知水平,同时还需要具备责任感和伦理意识,为人工智能的健康发展贡献力量。
有需要全套的AI大模型学习资源的小伙伴,可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费
】