深入解析LlamaIndex Workflows:构建复杂RAG与智能体工作流

面对多样的LLM应用需求,不管是主流如LangChain这样的基础开发框架,还是以云服务提供的低代码开发平台,都试图在提供基础组件抽象的基础上,提供更便捷的组装与编排这些组件的方式,以帮助构建更高级的AI工作流应用。

最近,另一家主流LLM框架LlamaIndex推出了一项新beta特性:Workflows。提供了一种与LangGraph不同、事件驱动的框架,以编排复杂的RAG或Agent应用工作流,支持灵活的分支、并行与循环等处理。

在这里插入图片描述

一、为什么需要Workflows

以两种主流LLM应用开发框架LangChain与LlamaIndex来看,它们都提供了大量的基础组件封装,将常见的RAG或Agent应用开发中常用到的流程环节进行了抽象,简化了开发并避免锁定到特定的底层设施(如大模型、向量库)。利用它们提供的API可以在极短的时间内开发出大模型应用,比如在LlamaIndex中,几行代码可以快速完成一个RAG原型:

......  
documents = SimpleDirectoryReader("../data").load_data()  
index = VectorStoreIndex.from_documents(documents)  
query_engine = index.as_query_engine()  
response = query_engine.query('你的问题')  
print(response)

但这里的问题是:当面对复杂的业务与优化需求时,不断出现更多的RAG工作模块与算法(重写、路由、排序、图索引等),如何用最佳的方法来组合与协调这些组件,实现更复杂的工作流程?

在框架的早期,可以总结成两种主要方式:

  • 提供更高层的组件与API的封装。 比如简单的向量检索器是VectorIndexRetriever,但现在需要增加路由功能,就封装一个带有路由的RouterRetriever;简单的查询引擎是QueryEngine,但现在需要增加重排功能,就增加一个可以传入Reranker模块的参数。

  • 提供链式或DAG(单向无环图)结构的可编排方法。最具代表性的是LangChain框架中的Chain(链)与LCEL(LangChain表达语言)特性;以及LlamaIndex在年初推出的Query Pipeline(查询管道)声明式API特性。它们都在一定程度上提供了编排能力。

    在这里插入图片描述

尽管如此,这种受限的工作流编排仍然面临较大的局限性:

高层的组件或API封装缺乏足够的灵活性。 体现在:

  • 随着需求的复杂化,需要封装更多的高层组件,框架变得更臃肿。
  • 高层组件的内部过于“黑盒”。比如很难对LangChain或LlamaIndex的ReActAgent组件构建的智能体的执行过程做更精细化的控制。

链式或DAG结构的流程无法支持循环,限制了使用场景。 但在如今的很多AI工作流中,比如智能体的反思(Relfection)以及一些新的RAG范式(如C-RAG等)都需要循环的支持。

不够简洁与直观,也难以调试。

基于这样一些原因,提供一种更强大的工作流定义与编排的支持,也成为了开发框架的发力重点,典型的就是之前介绍过的LangGraph以及本篇将一窥究竟的LlamaIndex Workflows

二、LlamaIndex Workflows初探

LlamaIndex Workflows是LlamaIndex近期推出(仍然是测试版)的用来替代之前Query Pipeline(查询管道)的新特性。与LangGraph不同的是,其没有采用类似LangCraph基于图结构的流程编排模式,而是采用了一种事件驱动的工作流编排方式:

工作流中的每个环节被作为step(步骤,代表一个处理动作),每个step可以选择接收(类似订阅)一种或多种event(事件)做处理,并同样可以发送一种或多种event给其他step。通过这种方式,把多个step自然的连接起来形成完整的Workflow。

在这种架构中,工作流的运行不是由框架来根据预先的定义(比如Graph)来调度任务组件执行,而是由组件自身决定:你想接收什么event,做什么处理,并发出什么event。如果组件B接受了A发出的某种event,那么B就会在A发出event后触发执行。

看一个这种方式定义的模拟复杂工作流:

在这里插入图片描述

图中涉及到LlamaIndex Workflows中的一些关键概念:

1)Workflow(工作流)
工作流代表一个复杂的RAG、Agent或者任意复合形式的LLM应用的端到端流程。创建完工作流后,调用run方法,并输入任务即可启动。

Workflow类似LangGraph中的Graph。

2)Step(步骤)
步骤代表工作流中的单个任务,你可以自由的定义步骤内容。每个步骤接收输入事件(订阅),并返回输出事件。当输入事件发生时,这个步骤就会自动执行。步骤使用Python函数定义。

Step类似LangGraph中的Node。

3)Event(事件)
事件是一个步骤的输入输出,也是工作流各个步骤之间的数据载体。当事件发生时,“订阅”该事件的步骤就会执行,同时从事件中取出必要数据。事件是一个Pydantic类型对象,可以自由定义结构。注意两个特殊事件:

  • StartEvent与StopEvent是两个系统事件,代表工作流开始与结束。
  • StartEvent由框架派发,接收StartEvent的步骤代表工作流的开始。
  • StopEvent由框架接收,发送StopEvent的步骤代表没有后续步骤。

Event是LlamaIndex中连接Step的机制,作用类似LangGraph中的Edge(边),但机制完全不同。

4)Context(上下文

Context是一个用来在整个工作流内自动流转的上下文状态对象,放入Context中的数据可以被所有步骤接收和读取到,可以理解为全局变量。

Context类似LangGraph中的State(状态),但LlamaIndex中各Step的数据交换更多通过event传递,而不是Context。

最后总结:LlamaIndex Workflows是通过一种事件驱动、自我管理的任务组件(step)来组装与编排复杂工作流的方式。此外还具有可视化(生成流程图)、可单步调试、可复用工作流等特性。

三、Hello,Workflows!

现在我们用LlamaIndex的Workflows来实现一个最简单的带Rerank重排功能的RAG工作流。其工作流程图如下:

在这里插入图片描述

这个简单的Workflow反映了一个经典RAG流程的两个工作阶段,索引(indexing)与生成(generate)阶段

这里把两个阶段做成不同的分支,是为了便于一次索引后做多次生成,也体现了Workflows的一个特征:一个Workflow的入口step可以有多个,只要这个step接收StartEvent事件。

看下这个Workflow的简单实现代码:

from llama_index.core.workflow import Event  
from llama_index.core.schema import NodeWithScore  
  
#定义两个事件  
class RetrieverEvent(Event):  
    nodes: list[NodeWithScore]  
  
class RerankEvent(Event):  
    nodes: list[NodeWithScore]  
  
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex  
from llama_index.core.response_synthesizers import CompactAndRefine  
from llama_index.core.postprocessor.llm_rerank import LLMRerank  
from llama_index.core.workflow import (  
    Context,  
    Workflow,  
    StartEvent,  
    StopEvent,  
    step,  
)  
  
from llama_index.llms.openai import OpenAI  
from llama_index.embeddings.openai import OpenAIEmbedding  
  
#workflow定义  
class RAGWorkflow(Workflow):  
    @step  
    async def indexing(self, ctx: Context, ev: StartEvent) -> StopEvent | None:  
        #不带query参数,表示索引阶段  
        if not ev.get("query"):  
            documents = SimpleDirectoryReader(input_files=['../../data/sales_tips1.txt']).load_data()  
            index = VectorStoreIndex.from_documents(documents=documents)  
            print("Indexing complete")  
            return StopEvent(result=index)  
        else:  
            return None  
  
    @step  
    async def retrieve(  
        self, ctx: Context, ev: StartEvent) -> RetrieverEvent | None:  
        #带query参数,表示生成阶段  
        if not ev.get("query"):  
            return None  
          
        query = ev.get("query")  
        index = ev.get("index")  
  
        await ctx.set("query", query)  
        retriever = index.as_retriever(similarity_top_k=2)  
        nodes = await retriever.aretrieve(query)  
        return RetrieverEvent(nodes=nodes)  
  
    @step  
    async def rerank(self, ctx: Context, ev: RetrieverEvent) -> RerankEvent:  
        ranker = LLMRerank(  
            choice_batch_size=5, top_n=3, llm=OpenAI(model="gpt-4o-mini")  
        )  
        new_nodes = ranker.postprocess_nodes(  
            ev.nodes, query_str=await ctx.get("query", default=None)  
        )  
        return RerankEvent(nodes=new_nodes)  
  
    @step  
    async def generate(self, ctx: Context, ev: RerankEvent) -> StopEvent:   
        llm = OpenAI(model="gpt-4o-mini")  
        summarizer = CompactAndRefine(llm=llm, streaming=True, verbose=True)  
        query = await ctx.get("query", default=None)  
  
        response = await summarizer.asynthesize(query, nodes=ev.nodes)  
        return StopEvent(result=response)  
      
w = RAGWorkflow()

代码非常清晰易懂:其中四个函数定义了四个step,各个step之间通过输入的event与返回的event进行连接,并驱动整个工作流的自动运行。

这里也能体现Workflows与LangGraph的最大区别:LangGraph通过定义图中的edge来体现流程节点之间的关系;而Workflows则是通过step之间的event传递来体现。

你可以通过如下代码运行工作流并测试:

w = RAGWorkflow()  
  
#索引阶段  
index = await w.run()  
  
#生成阶段,需要带入问题和创建好的索引  
result = await w.run(query="你的问题", index=index)  
async for chunk in result.async_response_gen():  
    print(chunk, end="", flush=True

此外,Workflows提供了工具对定义的Workflow进行可视化,使用如下代码:

from llama_index.utils.workflow import draw_all_possible_flows  
draw_all_possible_flows(  
    RAGWorkflow, filename="RAG.html"  
)

可以生成可视化的工作流程图:

在这里插入图片描述

如果你使用过LlamaIndex,可能会觉得这里的代码似乎更复杂化了,这并不意外:Workflows(以及LangChain的LangGraph)显然都是为了更复杂与更灵活化的LLM应用场景而设计,而非简单应用。


如何学习大模型?

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值