大模型LLM入门到进阶 | Dify学习使用(二)如何将文档上传到Dify知识库构建RAG?

一、Dify + RAG

如何将文档上传到Dify知识库构建RAG?

将文档上传到Dify知识库的过程涉及多个步骤,从文件选择、预处理、索引模式选择到检索设置,旨在构建一个高效、智能的知识检索系统。

1. 创建知识库:Dify主导航栏中的“知识”,在此页面可以看到已有的知识库。

  • 创建新知识库:拖放或选择要上传的文件,支持批量上传,但数量受订阅计划限制。
  • 空知识库选项:如果尚未准备文档,可选择创建空知识库。
  • 外部数据源:使用外部数据源(如Notion或网站同步)时,知识库类型将固定,建议为每个数据源创建单独知识库。

2. 文本预处理与清理:内容上传到知识库之后,需要进行分块和数据清洗,这个阶段可以理解为内容的预处理和结构化。

(1)自动模式:Dify自动分割和清理内容,简化文档准备流程。

(2)自定义模式:对于需要更精细控制的情况,可选择自定义模式进行手动调整。

3. 索引模式:根据应用场景选择合适的索引模式,如高质量模式、经济模式或问答模式。

(1)高质量模式:利用Embedding模型将文本转换为数值向量,支持向量检索、全文检索和混合检索。

(2)经济模式:采用离线向量引擎和关键字索引,虽然准确率有所降低,但省去了额外的 token 消耗和相关成本。

(3)问答模式: 系统会进行文本分词,并通过摘要的方式,为每段生成QA问答对。

4. 检索设置:

(1)在高质量索引模式下,Dify 提供三种检索设置:向量搜索、全文搜索、混合搜索

  • 向量搜索:将查询向量化,计算与知识库中文本向量的距离,识别最接近的文本块。

  • 全文搜索:基于关键字匹配进行搜索。

  • 混合搜索:结合向量搜索和全文搜索的优势。

  • Rerank模型:对检索结果进行语义重排序,优化排序结果。

(2)在经济索引模式下,Dify 提供单一检索设置:倒排索引和TopK

  • 倒排索引:一种为快速检索文档中的关键字而设计的索引结构。
  • TopK和分数阈值:设置检索结果的数量和相似度阈值。


二、如何学习大模型?

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

如有侵权,请联系删除

### 使用Dify构建知识库RAG系统的流程 #### 1. 准备工作环境 为了顺利搭建基于Dify平台的知识库及其对应的RAG系统,需先完成开发环境配置。确保安装了必要的依赖项和服务组件,特别是支持向量相似度搜索的Milvus数据库[^1]。 ```bash pip install pymilvus dify-client ``` #### 2. 数据预处理与导入 收集并整理目标领域内的文档资料或其他形式的数据集,将其转换成适合存储于Milvus中的结构化表示——通常是高维特征向量。此过程可能涉及自然语言处理技术来提取文本特征或将图像转化为数值型描述符。 #### 3. 配置 Milvus 向量索引 创建一个新的集合(collection),定义好字段属性(如ID、嵌入维度等),接着批量插入之前准备好的数据记录到该集合内。合理设置参数可以优化查询效率和资源利用率。 ```python from milvus import Milvus, DataType client = Milvus() collection_name = "knowledge_base" fields = [ {"name": "id", "type": DataType.INT64}, {"name": "embedding", "type": DataType.FLOAT_VECTOR, "params": {"dim": 768}} ] if not client.has_collection(collection_name)[0]: client.create_collection( collection_name=collection_name, fields=fields ) ``` #### 4. 实现检索模块 利用已建立起来的向量索引服务,在接收到用户提问时快速定位最接近的问题表述或相关内容片段。这里可以通过计算输入文本与其他已有条目之间的余弦距离实现高效匹配操作。 ```python def search_similar_questions(query_embedding): status, results = client.search( collection_name="knowledge_base", query_records=[query_embedding], top_k=5, params={"nprobe": 10} ) return [result.id for result in results[0]] ``` #### 5. 整合生成模型 最后一步就是将上述获取到的结果传递给预先训练过的大型语言模型,让其根据上下文线索自动生成合理的回复内容。这样不仅能够提供精准的答案摘要,还能灵活应对各种类型的询问需求[^2]。 ```python import dify_client as dc dify_api_key = 'your_dify_api_key' generator = dc.TextGenerator(api_key=dify_api_key) context_ids = search_similar_questions(user_query_embedding) response_text = generator.generate(context_ids=context_ids, prompt=user_input) print(response_text) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值