DeepRAG 让 AI 学会“按需思考“,准确率暴涨 21.99%

DeepRAG 让 AI 学会"按需思考",准确率暴涨 21.99%

发布时间:2025 年 02 月 03 日
RAG

DeepRAG: Thinking to Retrieval Step by Step for Large Language Models

大型语言模型(LLMs)在推理方面展现了巨大潜力,但受限于参数知识的时效性、准确性和覆盖范围,它们仍面临严重的事实幻觉问题。同时,将推理与检索增强生成(RAG)结合也颇具挑战,任务分解无效和冗余检索可能引入噪声,降低响应质量。本文提出 DeepRAG 框架,将检索增强推理建模为马尔可夫决策过程(MDP),实现战略性和自适应的检索。通过迭代分解查询,DeepRAG 在每一步动态决定是检索外部知识还是依赖参数推理。实验表明,DeepRAG 在提升检索效率的同时,将答案准确率提高了 21.99%,展现了其在优化检索增强推理方面的卓越效果。

https://arxiv.org/pdf/2502.01142

一、为什么需要 DeepRAG?大模型的"幻觉症"有救了!

当 ChatGPT 将 2024 年世界杯冠军说成中国队时,我们见识到了大语言模型(LLM)的"幻觉"——因知识时效性、准确性和覆盖范围不足导致的"一本正经胡说八道",已经成为 AI 应用的致命伤。检索增强生成(RAG)技术应运而生,它给 AI 装了个"移动硬盘",需要时随时调取外部知识库。

但现有 RAG 就像个"强迫症患者":面对"梅西获得过几次世界杯冠军?"这类简单问题,也要先拆解成多个子问题,每个步骤都机械式检索。这不仅浪费时间,更会引入大量无关信息,反而让回答质量下降。数据显示,这种冗余检索会使准确率暴跌 30%以上!

二、DeepRAG 是什么?让 AI 学会"按需思考"的智慧引擎

在这里插入图片描述

中科院团队提出的 DeepRAG 框架,首次将人类思维方式植入 AI 检索过程。就像我们查资料时会先思考"这个问题是否需要上网搜索",DeepRAG 通过两个组件实现AI检索:

1. 检索叙事(Retrieval Narrative) 像写侦探小说般构建推理链条,每个子问题的提出都基于前序检索结果。例如要回答"2023 年诺贝尔经济学奖得主的主要贡献",它会自动分解为:

  1. 2023 年获奖者是谁?→ 需检索
  2. 该学者的代表理论是什么?→ 可能直接调用模型已有知识
  3. 这个理论如何影响现实经济?→ 混合推理与检索

2. 原子决策(Atomic Decisions) 每个推理节点都像有个"智能开关",动态决定是否启动检索。这背后是马尔可夫决策过程(MDP),通过二叉搜索树探索最优路径。实验显示,这种机制能减少 47%的不必要检索。

在这里插入图片描述

三、三大技术突破:比传统方法强在哪?

突破 1:知识边界校准技术传统方法像"蒙眼找路",要么全盘检索要么完全自信。DeepRAG 通过校准链(Chain of Calibration),让 AI 清楚知道自己的知识边界。就像学霸能准确判断哪些题需要查资料,哪些可以直接作答。

突破 2:模仿学习+强化学习双引擎先用 2 万组"问题-最优检索路径"数据教会 AI 正确的思考模式,再通过强化学习不断优化决策。这种训练方式使 HotpotQA 数据集上的准确率从 68%跃升至 89%。

突破 3:端到端自适应架构不同于需要额外训练分类器的方案,DeepRAG 直接基于现有大模型改造。就像给汽车换装智能导航系统,无需更换发动机就能实现自动驾驶级的检索优化。

四、实测表现:准确率暴涨的奥秘

在涵盖热点问答、跨领域知识库等 5 大测试场景中,DeepRAG 交出了惊艳答卷:

  • 多跳推理准确率提升 21.99%
  • 检索效率提升 3.8 倍
  • 时间敏感问题处理正确率 92.7%
  • 知识库异构查询成功率 85%

更令人振奋的是,在处理"新冠疫情对 2023 年全球经济影响"这类复杂问题时,DeepRAG 能自动识别需要检索最新 GDP 数据,而直接调用模型已有的经济学原理知识。

五、AI 进化的新方向

本篇论文给出了三大启示:

  1. 认知智能新范式:将人类决策思维编码进 AI,而不仅是数据驱动
  2. 成本革命:减少冗余计算可为单个大模型节省百万级算力成本
  3. 可信 AI 突破:通过精确控制知识来源,大幅降低事实性错误

正如论文作者所言:"未来的 AI 不应该是个全知全能的’神’,而应该是个懂得’何时需要查资料’的智者。"DeepRAG 标志着大模型正在从"知识搬运工"向"智慧决策者"进化。

论文原文: https://arxiv.org/pdf/2502.01142
获取更多最新 Arxiv 论文更新: https://github.com/HuggingAGI/HuggingArxiv!


六、如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值