英文语境下用BERT做CoLA任务Fine-tuning

本文介绍了在CUDA 10.1和TensorFlow-GPU 1.13.1环境下,使用BERT进行CoLA任务的Fine-tuning过程。首先阐述了运行环境和CoLA任务简介,然后演示了如何运行预训练模型的评估,并详细讲解了Fine-tuning步骤,包括训练、评估和预测。实验结果显示,经过Fine-tuning,模型的准确率从0.6提升到0.8,强调了GPU加速的重要性。最后探讨了数据拓展策略,如句子篡改和高质量语料来源。
摘要由CSDN通过智能技术生成

一、运行环境和简介

CUDA=10.1

CUDNN=7.6.5

python=3.6.5

anaconda=3 5.2.0

tensorflow-gpu=1.13.1

conda install tensorflow-gpu=1.13.1 一句话完成环境搭建

CoLA任务是GLUE里面的其中一项,二分类语法错误的任务。

二、运行demo

在你下载好所有的预训练权重以后

让我们来做一次MRPC任务评估

运行指令:打开评估

python run_classfier.py \
--task_name=MRPC \
--do_eval=true \
--data_dir=你的MRPC数据目录 \
--vocab_file=你的预训练权重词表文件 \
--bert_config_file=你的预训练权重配置文件 \
--init_checkpoint=你的预训练权重文件复制过来后把这里的.cpkt后边删掉文件里面的名字不要动 \
--max_seq_length=128 \
--train_batch_size=32 \
--learning_tae=2e-5 \
--num_train_epochs=3.0 \
--output_dir=./tmp/mrpc_output/

检查能否正常执行、输出目录有无评估结果。

三、fine-tuning

RTX2080的显存8G

使用GLUE里面的CoLA自带训练数据,打开训练,打开评估,打开预测

python run_classfier.py \
--task_name=cola \
--do_train=true \
--do_predict=true \
--do_ev
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值