一、运行环境和简介
CUDA=10.1
CUDNN=7.6.5
python=3.6.5
anaconda=3 5.2.0
tensorflow-gpu=1.13.1
conda install tensorflow-gpu=1.13.1 一句话完成环境搭建
CoLA任务是GLUE里面的其中一项,二分类语法错误的任务。
二、运行demo
在你下载好所有的预训练权重以后
让我们来做一次MRPC任务评估
运行指令:打开评估
python run_classfier.py \
--task_name=MRPC \
--do_eval=true \
--data_dir=你的MRPC数据目录 \
--vocab_file=你的预训练权重词表文件 \
--bert_config_file=你的预训练权重配置文件 \
--init_checkpoint=你的预训练权重文件复制过来后把这里的.cpkt后边删掉文件里面的名字不要动 \
--max_seq_length=128 \
--train_batch_size=32 \
--learning_tae=2e-5 \
--num_train_epochs=3.0 \
--output_dir=./tmp/mrpc_output/
检查能否正常执行、输出目录有无评估结果。
三、fine-tuning
RTX2080的显存8G
使用GLUE里面的CoLA自带训练数据,打开训练,打开评估,打开预测
python run_classfier.py \
--task_name=cola \
--do_train=true \
--do_predict=true \
--do_ev