InsightFace-Paddle 使用指南(2)

本文是InsightFace-Paddle使用指南的第二部分,详细讲解了如何在Python中导入并运用InsightFace,包括建立人脸索引、单独进行人脸检测、视频检测以及1:1和1:N的人脸识别过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.导入InsightFace

import insightface_paddle as face
import logging
logging.basicConfig(level=logging.INFO)

2.建立人脸索引

parser = face.parser()
args = parser.parse_args()
args.build_index = "./demo/friends/index.bin"
args.img_dir = "./demo/friends/gallery"
args.label = "./demo/friends/gallery/label.txt"
predictor = face.InsightFace(args)
predictor.build_index()

3.单独检测人脸

import cv2

parser = face.parser()
args = parser.parse_args()

args.det = True
args.output = "./output"
path = "./demo/friends/query/friends1.jpg"
img =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值