木桶原理与反木桶原理及数学论证

目录

一、木桶原理

二、反木桶原理

三、数学论证

1、简单论证

2、相对论证

3、思考


 

木桶原理与反木桶原理是我们生活中非常熟知的理论,

一、木桶原理

木桶原理:指一个由若干木板构成的木桶,其容量取决于最短的那块木板。

对一个组织而言,构成组织的各个要素类似于木桶的若干木板,而组织的能力又如木桶的容量,取决于组织中的要素。

二、反木桶原理

反木桶原理:木桶最长的一根木板决定了其特色与优势,在一个小范围内成为制高点;

对组织而言,凭借其鲜明的特色,就能跳出大集团的游戏规则,独树一帜建立自己的王国。

三、数学论证

基于上述两种观点我们可以客观的用数学计算来进行论证一下:

1、简单论证

以上图为例(当然实际过程中桶的木板大小不一,层次不齐,我们这里只考虑特殊的两面情况),

圆柱体的体积=底面面积*高

V1的高就是最短的那块板,即h,

右边的体积我们一分为二的看,圆柱体部分就是与左边一样,倾斜的部分,我们可以按照理论情况下圆柱体的1/2来计算,

这样我们就得到了V1和V2,我们发现V2是明显大于V1的。

也就是说反木桶理论是有道理的。

但是我们还要明白的一点就是,木桶要倾斜,就必须有支撑,

那么支撑这个木桶的支架是需要成本的,所以我们在利用反木桶原理时还是要考虑好投入产出比

简单来说,如果一个组织里面你想要发挥水平最高成员的优势来弥补其他成员的劣势,你就要给这个水平高的成员更高的工资和更好的待遇。

2、相对论证

接下来,我们考虑,如果短板和长板同时增加相同的长度,那么体积的变化是怎样的,

比如,长版和短板分别都增加h的长度,

我们在对比V1、V2,具体过程比较简单就不一一说明了,

我们可以看到

h>l        没意义,不参与讨论,因为这样我们就要吧长版和短板互换进行讨论了,因为这时短板成了长板

h=l       那么V1=V2

h<l       那么V1<V2

当然,还是那个问题,要考虑支架的成本问题

3、思考

同时我们可以看到,增加长版带来的体积增加,其实就是上图中的小三角部分,

也就是说,我们想办法增加长板来增加整个容器的体积时,带来的增长是比表差的。

也就是我们常说的边际效益递减。

 

在组织里面,所有成员的水平参差不齐,这时候作为leader应该想办法去除短板,办法

要不就是增加短板,如果不行那就换个木板,并且适当的倾斜一下木桶,让长板发挥它的优势,最大化的利用。

### 木桶原理算法实现 #### 背景介绍 木桶原理的核心在于,整体性能受限于最短的那块木板。这一概念可以被抽象化并应用于多种编程场景中,例如寻找数组中最小子序列的最大值问题[^2]。 #### 算法设计思路 对于给定的一组数据 `a1, a2, ..., an` 表示每一块木板的高度,目标是从这些木板中选取连续的子集来构建一个木桶,并使得该木桶能够容纳尽可能多的水。具体来说: - **输入**: 数组 `[ai]` 和查询参数 `x`。 - **输出**: 使用连续 `x` 块木板所能构成的最大容量。 为了高效解决这个问题,我们可以采用滑动窗口技术配合双指针方法来进行优化处理。 #### Python 实现代码 以下是基于上述逻辑的一个简单实现方案: ```python def max_bucket_capacity(boards, queries): result = [] length = len(boards) for x in queries: current_min = float('inf') window_start = 0 # Initialize the first sliding window of size 'x' for i in range(x): current_min = min(current_min, boards[i]) temp_max = current_min # Slide the window forward one by one and update results accordingly. for j in range(x, length): entering_value = boards[j] leaving_value = boards[window_start] if leaving_value == current_min: current_min = min(boards[window_start:j+1]) elif entering_value < current_min: current_min = entering_value temp_max = max(temp_max, current_min) window_start += 1 result.append(temp_max) return result # Example usage: if __name__ == "__main__": heights = [3, 5, 7, 8, 9, 4, 6, 12, 10] query_x_values = [3, 5, 7] capacities = max_bucket_capacity(heights, query_x_values) print(capacities) # Output should reflect maximum possible bucket sizes per each queried value of 'x'. ``` 这段程序定义了一个函数 `max_bucket_capacity`, 它接受两个参数——一个是代表各块木板高度的列表 `boards`; 另外一个是包含不同询问数量 `x` 的列表 `queries`. 函数返回的是针对每次询问所对应的最高可能容量的结果集合. #### 进一步扩展思考 除了基本版本之外还可以考虑加入更多约束条件或者改变规则设定比如允许调整某些特定位置上的数值从而影响最终结果等等情况下的变体形式探讨[^5]. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Andy_shenzl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值