如何写好DeepSeek的提示词:从入门到专家

在人工智能的世界里,提示词(Prompt)就像是一把钥匙,能够打开AI的智慧之门。无论是初学者还是专家,掌握如何写好提示词,都是与AI高效沟通的关键。本文将带你从入门到精通,逐步掌握提示词的艺术。


一、提示词是什么?

提示词是你与AI对话的起点,是引导AI生成内容的指令。它可以是简单的一句话,也可以是一个详细的描述。提示词的质量直接影响AI的输出结果。想象一下,提示词就像是你给AI的“任务书”,写得越清晰,AI完成得越好。


二、入门篇:写好提示词的基础技巧
  1. 明确目标
    在写提示词之前,先问自己:我想要AI做什么?是写一篇文章、解答一个问题,还是生成一段代码?明确目标后,提示词才能有的放矢。

    • 示例
      差:“写点东西。”
      好:“写一篇关于人工智能未来发展的短文,300字左右。”

  2. 简洁清晰
    AI喜欢简洁明了的指令。避免使用模糊或复杂的语言,尽量用短句表达你的需求。

    • 示例
      差:“能不能帮我写一个关于科技的东西,随便写点。”
      好:“写一段关于5G技术的科普介绍,100字以内。”

  3. 提供上下文

### DeepSeek Qwen 使用指南及相关信息 #### 关于DeepSeek及其资源链接 DeepSeek是由高瓴资本支持的中国AI研究实验室,该机构发布的前沿模型之一为DeepSeek-V3。此模型属于混合专家(Mixture-of-Experts, MoE),具有6710亿参数规模,在每次处理Token时激活约370亿参数,并基于庞大的14.8万亿Token的数据集进行了训练[^2]。 对于希望深入了解或利用DeepSeek所提供的服务和技术的研究者与开发者而言,可以访问官方网址获取更多信息:[https://www.deepseek.com/](https://www.deepseek.com/) [^1];同时也可以通过GitHub上的开源项目页面来查看有关DeepSeek-V3的技术文档和其他资料:[https://github.com/deepseek-ai/deepseek-v3](https://github.com/deepseek-ai/deepseek-v3)。 #### 安装和使用Qwen系列模型的方法概述 虽然具体的`DeepSeek Qwen`名称并未直接提及于提供的参考资料中,但从上下文中推测这可能是指代类似于Qwen这样的大型语言模型(LLMs)。针对这类模型的一般性指导如下: 如果想要部署像Qwen这样来自DeepSeek团队开发的大规模预训练模型,则可以从Hugging Face平台下载对应的权重文件并加载到本地环境中运行测试实验。例如,假设要尝试名为`deepseek-ai/Qwen2.5-Coder`的一个版本,那么可以通过Python脚本实现快速入门操作: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name_or_path = "deepseek-ai/Qwen2.5-Coder" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) input_text = "编一段简单的Python程序用于计算两个数相加的结果:" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_length=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` 这段代码展示了如何从Transformers库加载指定型号的语言模型以及执行基本的任务——即给定提示词后自动生成后续文本内容的过程。 请注意上述例子中的`deepseek-ai/Qwen2.5-Coder`仅为示意用途,实际存在的具体模型名需参照官方发布的信息为准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张3蜂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值