题目描述
两个大于 1 小于 10 的整数,把两数之和告诉甲,两数之积告诉乙。让他俩猜,两人都说不知道。之后两人都沉思了一会儿,突然乙说:“我知道这两个数了”,甲也跟着说:“我知道了”。请问:这两个数各是多少?
题目答案:
两数之和表格:
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|
2 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
3 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
4 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
5 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
6 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
7 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
8 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
9 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
两数之积表格:
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|
2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 |
3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 |
4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 |
5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 |
6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 |
7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 |
8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 |
9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 |
很明显,甲是在乙之后确定这两个数。说明两数之和在上表中不唯一,可以推出两数之和的范围为 6 ~16。
乙首先说自己知道这两个数了,说明两数之积在上表中是唯一的(除去相同对称性)。因此可以得到以下乘积数。
4、6、8、9、10、14、15、20、21、25、27、28、30、32
、35、40、42、45、48、49、54、56、63、64、72、81。
而甲随后也跟着说他也知道了。也就是说,当他知道两数之积在上面相乘的列表中唯一的时候,他就能确定这两个数。由于两数之和是在 6~16 中,因此上面的积数可以首先除去 4、6、72、81。剩下的积数为:
8、9、10、14、15、20、21、25、27、28、30、32
、35、40、42、45、48、49、54、56、63、64。
现在对每一个积数进行分解:
- 8:8 = 2 * 4,2 + 4 = 6
- 9:9 = 3 * 3,3 + 3 = 6
- 10:10 = 2 * 5,2 + 5 = 7
- 14:14 = 2 * 7,2 + 7 = 9
- 15:15 = 3 * 5,3 + 5 = 8
- 20:20 = 4 * 5,4 + 5 = 9
- 21:21 = 3 * 7,3 + 7 = 10
- 25:25 = 5 * 5,5 + 5 = 10
- 27:27 = 3 * 9,3 + 9 = 12
- 28:28 = 4 * 7,4 + 7 = 11
- 30:30 = 5 * 6,5 + 6 = 11
- 32:32 = 4 * 8,4 + 8 = 12
- 35:35 = 5 * 7,5 + 7 = 12
- 40:40 = 5 * 8,5 + 8 = 13
- 42:42 = 6 * 7,6 + 7 = 13
- 45:45 = 5 * 9,5 + 9 = 14
- 48:48 = 6 * 8,6 + 8 = 14
- 49:49 = 7 * 7,7 + 7 = 14
- 54:54 = 6 * 9,6 + 9 = 15
- 56:56 = 7 * 8,7 + 8 = 15
- 63:63 = 7 * 9,7 + 9 = 16
- 64:64 = 8 * 8,8 + 8 = 16
显然只有乘积为 10、15的人没有重复,即这两个数有以下两种组合:2 和 5 、 3 和 5。