论文标题: ERetinex: Event Camera Meets Retinex Theory for Low-Light Image Enhancement
发表日期: 2025年03月
作者: Xuejian Guo, Zhiqiang Tian, Yuehang Wang, Siqi Li, Yu Jiang, Shaoyi Du, Yue Gao
发表单位: Xi'an Jiaotong University, Jilin University, Tsinghua University
原文链接: https://arxiv.org/pdf/2503.02484
开源代码链接: https://github.com/lodew920/ERetinex
引言
在低光场景中重建清晰图像是计算机视觉中的一项重要而具有挑战性的任务。ERetinex框架通过结合事件相机的高动态范围数据和传统图像的色彩信息,提供了一种创新的方法来增强图像质量,在极端光照条件下保持视觉信息的完整性。
问题背景及相关工作
在黑暗场景中拍摄出清晰的图像,一直是计算机视觉领域的重大挑战。传统摄像头由于曝光时间的限制,常常无法在低光环境中有效捕捉结构和色彩信息。而事件相机(Event Camera)作为一种仿生视觉传感器,因其高动态范围和高时间分辨率,能够在极端低光环境中表现出色。这些特性使其在自动驾驶、夜间监控等领域的应用潜力巨大。
方法概述
本文提出了一种将事件相机与Retinex理论结合的低光图像增强新方法,称为ERetinex。通过利用事件相机的高时间分辨率数