(arxiv 2024)即插即用多尺度注意力聚合模块MSAA,即用即起飞

题目:CM-UNet: Hybrid CNN-Mamba UNet for Remote Sensing Image Semantic Segmentation

论文地址:https://arxiv.org/pdf/2405.10530

创新点

  • 提出CM-UNet框架:基于Mamba架构的CM-UNet框架,通过整合CNN和Mamba模块,能够在遥感图像语义分割任务中高效捕捉局部和全局信息。

  • 设计CSMamba块:CSMamba块结合了通道和空间注意力机制,将Mamba模块扩展为能够处理图像长程依赖的组件,提升了特征选择和信息融合的精度。

  • 多尺度注意力聚合模块(MSAA):引入MSAA模块,聚合编码器的多尺度特征,通过空间和通道的双重聚合提高特征表达能力,替代传统的跳跃连接,更好地支持解码器的多层次信息融合。

  • 多输出监督机制:在解码器的不同层次引入多输出监督,确保各层次逐步细化分割图,从而提升最终分割精度。

方法

整体结构

       CM-UNet模型结构由ResNet编码器、多尺度注意力聚合模块(MSAA)和CSMamba解码器组成。编码器负责提取多层次特征,MSAA模块融合多尺度特征以增强表达,解码器则利用CSMamba块通过通道和空间注意力机制高效捕捉长程依赖关系,最终生成精细的分割图,并在各层解码器中加入多输出监督以优化分割结果。

  • CNN编码器:采用ResNet结构作为编码器,用于提取多层次的特征信息。与传统UNet不同,CM

### MSAA多尺度注意力机制概述 在计算机视觉和深度学习领域,MSAA(Multi-Scale Attention Aware)模块被设计用来提升模型对于不同尺度特征的关注能力。这种机制通过引入多个尺度的感受野来捕捉图像中的细节信息以及更广泛的上下文关系。 #### 结构特点 MSAA-Net采用了改进版的U-Net架构,在传统的基础上加入了专门针对多尺度特性的处理单元[^1]。具体来说: - **编码阶段**:负责提取输入数据的不同层次特征表示; - **解码阶段**:利用来自编码部分的信息重建目标对象轮廓或其他属性; - **跨层连接**:不同于标准跳跃链接仅传递相同位置像素间的关系,这里实现了更加灵活有效的特征融合方式; 为了进一步加强网络性能,CM-UNet框架下的MSAA模块不仅继承了上述优点还进行了创新优化。它能够更好地综合低级到高级的各种表征形式,并将其有效地传达给后续处理环节以辅助最终决策过程[^2]。 #### 工作原理 当涉及到具体的实现方法时,可以考虑以下几个方面: - 使用卷积神经网络(CNNs)作为基础构建块来进行初步的空间维度降维操作; - 应用自注意(self-attention)或其变体如通道注意力(channel-wise attention)[^4]等技术手段突出重要区域/通道的重要性; - 设计特定类型的残差路径(residual path),使得每一层都能获得足够的梯度反馈从而加快收敛速度并防止过拟合现象发生。 ```python import torch.nn as nn class MSAA(nn.Module): def __init__(self, in_channels, out_channels): super(MSAA, self).__init__() # Define convolutional layers with different kernel sizes for multi-scale feature extraction self.conv_3x3 = nn.Conv2d(in_channels, out_channels//4, kernel_size=3, padding=1) self.conv_5x5 = nn.Conv2d(in_channels, out_channels//4, kernel_size=5, padding=2) self.conv_7x7 = nn.Conv2d(in_channels, out_channels//4, kernel_size=7, padding=3) # Channel-wise attention module self.channel_attention = MultiScaleChannelAttentionModule(out_channels) def forward(self, x): feat_3x3 = self.conv_3x3(x) feat_5x5 = self.conv_5x5(x) feat_7x7 = self.conv_7x7(x) concat_features = torch.cat([feat_3x3, feat_5x5, feat_7x7], dim=1) attended_features = self.channel_attention(concat_features) return attended_features ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值