- 博客(158)
- 收藏
- 关注
原创 PW-FNet:告别复杂自注意力,小波与傅里叶变换打造轻快强效的图像恢复新基线
北京航空航天大学与中国空间技术研究院联合提出了一种高效图像恢复新方法PW-FNet。该研究创新性地融合小波变换和傅里叶变换,取代传统Transformer架构:通过金字塔小波分解实现多尺度处理,利用傅里叶变换高效捕获全局信息。实验表明,PW-FNet在去雨、去模糊等8项任务上超越SOTA方法,同时参数量仅为NeRDRain的1/16,计算成本降至1/5。该工作为轻量级图像恢复技术在实际应用中的部署提供了新思路。
2025-07-26 12:30:00
546
原创 3D LUT--颜色魔方
LUT(颜色查找表)是用于图像颜色调整的专业工具,分为1D、2D和3D三种类型。1D LUT适用于基础调色,2D LUT可调整色度色相,而3D LUT能精准控制RGB三原色混合,实现电影级调色效果。3D LUT将颜色视为三维空间,提供最精细的色彩调节,支持17x17x17等不同精度的表格规格。在ISP图像处理中,3D LUT可精确复制目标设备色彩风格,但需权衡计算量和功耗。LUT文件可保存为.cube格式,实现跨平台色彩效果复用。
2025-07-26 09:00:00
368
原创 ISP算法——从颜色恒常性到白平衡
人眼颜色感知是生物机制与认知协同作用的结果,视锥细胞和视杆细胞分别检测颜色和亮度,大脑综合判断颜色。颜色恒常性让人在不同光照下准确识别物体颜色(如看似红色的灰色草莓照片)。而相机传感器需要白平衡技术来消除光源色温影响,还原真实颜色。色温用K表示,从红到蓝变化(如1800K的夕阳偏红,12000K的阴影偏蓝)。白平衡调整方向与光源色温相反,可通过预设、手动或自动方法实现,后者包括灰度世界法等多种算法。白平衡技术既用于色彩校正,也可用于艺术创作。
2025-07-25 19:24:22
875
原创 (CVPR 2025 )基于学习的自动HSI光谱校准方法
本文提出首个自动高光谱图像光谱校准方法SIT(Spectral Illumination Transformer),包含三项创新:1)首次提出无需物理参考的自动光谱校准任务,解决传统方法依赖参考板的局限;2)构建首个大规模自然场景高光谱数据集BJTU-UVA(765对)及其扩展版本BJTU-UVA-E(7650对);3)设计基于U形Transformer的SIT模型,通过光谱注意力和光照注意力双分支机制实现精准校准。实验表明SIT在PSNR等指标上显著优于现有方法,在低光照和近红外波段更具鲁棒性。该研究为高
2025-07-25 17:32:45
966
原创 TPAMI 2025 | 空间频率调制(SFM),深度学习语义分割的细节守护者
《Spatial Frequency Modulation for Semantic Segmentation》提出了一种创新的空间频率调制(SFM)方法,有效解决了深度学习模型在下采样过程中高频信息丢失的问题。该方法通过自适应重采样(ARS)将高频特征调制到低频域,再通过多尺度自适应上采样(MSAU)进行解调恢复,显著缓解了混叠效应。实验表明SFM不仅提升了语义分割性能,在图像分类、实例分割等任务中也展现出卓越效果。该工作为视觉任务中的高频信息处理提供了通用解决方案,被TPAMI 2025接收。
2025-07-21 11:30:16
781
原创 FastLLVE:实时低光视频增强新突破
摘要: 本文提出FastLLVE,一种基于强度感知查找表(IA-LUT)的实时低光照视频增强方法。针对现有单帧方法导致的闪烁问题和3D-CNN计算成本高的问题,FastLLVE通过可学习的IA-LUT模块实现自适应增强,解决低光照场景的一对多映射难题。IA-LUT结合动态权重增强泛化能力,并利用像素级变换保持帧间亮度一致性,同时支持50+ FPS的1080p视频处理。实验表明,FastLLVE在PSNR和效率上均优于现有方法,且可扩展插件式去噪模块(FastLLVE-dn)进一步提升性能。该方法为实时低光照
2025-07-21 11:28:09
1148
原创 Frequency-Domain Fusion Transformer for Image Inpainting
本文提出Dabformer模型,通过融合小波变换与Gabor滤波提升图像修复效果。该模型采用四级编码器-解码器结构,创新设计频率域融合注意力机制和自适应门控网络,有效平衡全局语义与局部细节。实验表明,在图像去雨和降质恢复任务中,Dabformer在PSNR等指标上显著超越现有方法。消融实验验证了各模块的有效性,尤其是小波与Gabor的协同作用。未来可优化频域滤波架构,并引入多模态信息增强修复效果。
2025-07-11 09:31:18
590
原创 ReF-LLE: Personalized Low-Light Enhancement via Reference-Guided Deep Reinforcement Learning
ReF-LLE框架创新性地结合深度强化学习与傅里叶频域处理,实现个性化低光图像增强。该技术通过调整频域振幅分量并保持相位不变,避免传统RGB空间处理的色彩失真问题。采用A3C强化学习框架,设计双重奖励机制精准控制增强程度,支持三种定制方式:参考图像引导、参数调节和迭代控制。实验表明,该方法在PSNR等指标上全面领先,尤其擅长保留细节与自然视觉效果。其个性化调节能力为影视、安防、医疗等领域带来新可能,未来可通过算法优化进一步提升实时性。
2025-07-11 09:23:50
1034
原创 FlashDepth | 混合模型+Mamba革新,24 FPS实时2K视频深度估计,超越Depth Anything v2
《FlashDepth:2K分辨率实时视频深度估计方法》 本文提出FlashDepth模型,解决了高分辨率视频深度估计中实时性与精度平衡的难题。该方法基于DepthAnythingV2单帧模型,通过两项创新实现了24FPS的2K分辨率处理能力:1)引入Mamba循环网络对齐时序特征,保持帧间一致性;2)设计混合架构,结合高分辨率小模型(FlashDepth-S)和低分辨率大模型(FlashDepth-L),通过交叉注意力融合特征。两阶段训练策略先利用低分辨率数据训练基础模型,再用少量高分辨率数据微调混合模型
2025-07-07 09:07:38
993
原创 ISP-free multi-spectrum fused imaging for extremely low-light enhanced photography
本文提出SPFNet光谱融合网络,通过多光谱数据融合解决极低光环境下的图像增强问题。不同于传统RGB后处理方法,该网络利用光谱相关性和噪声差异性,结合物理先验的编码器-解码器架构,实现噪声抑制与细节重建。实验表明,在0.01勒克斯条件下,SPFNet在PSNR(23.24dB)和色差指标(ΔE=2.84)上显著优于现有方法,并开发了40FPS的轻量版SPFNet-lite。该方法为自动驾驶、夜间监控等应用提供了有效的低光成像解决方案。
2025-07-07 08:58:40
672
原创 CVPR 2025 | DORNet:一种面向降质和正则化的盲深度超分辨率网络
本文提出DORNet框架,解决现有深度超分辨率方法面对未知降质时的性能下降问题。该框架创新性地采用自监督降质学习策略,通过路由机制动态建模降质过程;并提出基于降质先验的RGB-D融合方案,利用面向降质的特征变换模块选择性融合RGB信息。实验证明,DORNet在真实和合成数据上均优于现有方法,有效处理未知降质。
2025-06-24 08:54:07
303
原创 TCSVT 2025 | 提取噪声与暗度:通过双先验引导实现低光照图像增强
本文提出了一种基于双先验引导的低光照图像增强方法END及其增强版本END+。研究发现低光照图像在YCbCr空间中亮度通道呈现黑暗-噪声失真,色度通道主要为噪声。为此,作者设计了先验提取网络(PEN)从不同通道学习特定先验,并通过渐进式图像增强网络(IEN)利用先验信息逐步恢复图像。END+进一步引入Transformer模块来提取长距离先验,在多个基准测试中表现优异。实验表明该方法在提亮暗区同时有效抑制噪声,显著优于现有方法。 (摘要共146字,简明扼要地概括了研究背景、方法创新点和实验结果,符合字数要求)
2025-06-24 08:43:51
1238
原创 TCSVT 2025 |实现整体夜间可见度提升:融合不规则光晕去除与光晕感知增强
本文提出ONVE零样本学习框架,通过新型夜间成像模型(NIM-NLS)和基于APSF的光晕物理模型,实现了无需训练数据的夜间图像增强。创新性地设计光晕引导Retinex渐进式增强模块(GRE),有效协调光晕去除与亮度提升的矛盾。实验表明,该方法在保持图像自然度的同时减少信息损失,优于现有技术。
2025-06-23 09:25:42
184
原创 M2Restore:混合专家+Mamba-CNN双剑合璧,图像修复新高度!
M2Restore通过三大创新解决全场景图像修复难题:CLIP引导的专家路由实现精准退化识别,Mamba-CNN双分支架构平衡全局与局部特征,动态门控机制优化计算资源分配。在多项基准测试中,其PSNR指标超越SOTA方法0.5-1.2dB,推理速度比主流Transformer方案快3倍以上。未来可探索三个方向:1)扩展至视频修复领域,利用时序信息提升稳定性;2)开发移动端优化版本,满足实时处理需求;3)结合扩散模型生成更自然的修复细节。
2025-06-23 09:07:33
796
原创 Efficient RAW Image Deblurring with Adaptive Frequency Modulation
《基于自适应频率调制的RAW图像高效去模糊方法》 摘要:本研究提出FrENet网络,针对RAW图像去模糊任务提出创新解决方案。该网络核心创新在于自适应频率位置调制模块(AFPM),能够根据频谱位置动态调整频率成分权重,实现对不同频段的精确控制。方法在Deblur-RAW数据集上达到45.63dB PSNR和0.994 SSIM,计算量仅2.22GMACs,比同类方法节省75%。值得注意的是,该方法在sRGB域同样表现出色,在RealBlur-J数据集上达到33.87dB PSNR。通过频域跳跃连接和全局分支
2025-06-04 16:57:36
610
原创 TCSVT 2025 | 基于循环门控注意力与高效解耦的轻量级图像去模糊
本文提出了一种基于循环门控注意力与高效解耦的轻量级图像去模糊网络RGE-Net。该网络通过创新的循环门控注意力模块(RGAM)实现参数高效利用,利用大内核卷积与循环路径使每个权重训练两次,并引入门控注意力机制抑制错误特征。同时设计了高效解耦模块(EDM),将特征解耦为空间和通道维度进行处理后再融合,显著提升性能。实验表明,RGE-Net在多个基准数据集上优于现有方法,兼具高效性与轻量化优势。网络采用4-4-12-4-4的编码器-解码器结构,底层设置更多模块以有效捕捉多尺度特征。
2025-05-29 09:15:24
1069
原创 TMM 2024 | 基于SAM结构先验与引导的低光照图像增强
本文提出一种基于SAM结构先验与引导的低光照图像增强方法SGF。该方法创新性地引入SAM模型构建图像级和特征级结构先验,设计了区域感知动态特征提取器及分割引导多头自注意力机制。SGF框架包含分割先验重建模块(SPRM)和分割引导增强模块,通过多级对称分层结构实现先验信息与增强过程的深度交互。实验表明,该方法能有效挖掘暗区结构信息,建模区域间光照关系,在定量评估和视觉效果上均优于现有方法。
2025-05-28 09:06:18
781
原创 HAODiff:通过双提示引导的人类感知的一步扩散
上海交大与vivo团队提出的人像修复模型HAODiff,通过创新双提示引导机制实现高效修复。该模型采用三支路网络结构,分别处理高质量特征、残差噪声和运动模糊定位,结合包含人类运动模糊的退化流程生成训练数据。实验表明,HAODiff只需0.2秒即可修复512×512图像,消除90%以上运动模糊,在保真度和速度上均显著优于现有方法。该技术为手机端实时人像修复提供了新方案。
2025-05-28 08:49:54
762
原创 TPAMI 2025 | CEM:使用因果效应图解释底层视觉模型
本文提出了一种名为因果效应图(CEM)的新方法,用于解释底层视觉模型的内部机制。不同于传统的相关性分析,CEM基于因果推理理论,通过干预自然图像块来量化输入区域对模型输出的因果效应。该方法具有通用性,适用于超分辨率、去噪、去雨等多种底层视觉任务。研究发现:在超分辨率任务中,RCAN模型存在显著的负向效应区域;多任务训练可能削弱模型利用全局信息的能力。CEM为理解底层视觉模型提供了新视角,有助于优化模型设计和训练策略。
2025-05-26 21:37:50
968
原创 噪声建模在一小时:最小化准备工作的自监督低光RAW图像去噪
摘要:索尼研究院提出了一种创新的自监督RAW图像降噪方法,将传统噪声建模所需数天的准备时间缩短至1小时。该方法通过假设量子效率值合成光子散粒噪声,直接采样暗帧作为信号无关噪声,并采用暗影校正技术,避免了复杂的传感器校准过程。实验结果表明,该方法在SID、ELD和LRID三个数据集上的平均PSNR达到46.43dB,比现有最佳方法提升0.54dB,且在智能手机传感器上表现优异(45.08dB)。这项技术简化了低光摄影的噪声处理流程,为实际应用提供了高效解决方案。
2025-05-26 15:01:52
1152
原创 LCDNet让模糊照片秒变高清,计算成本直降84.2%!
还在为模糊的照片发愁吗?这项研究创新性地结合了空间细节和频域信息,通过混合尺度频率选择模块和跳跃连接注意力机制,在保持计算效率的同时,将图像去模糊、去雨等任务的性能提升到新高度。:混合尺度频率选择模块(Hybrid Scale Frequency Selection Block),相当于图像修复界的"智能调音台",能同时捕捉空间细节和筛选关键频率成分。:跳跃连接注意力机制(Skip Connection Attention Mechanism),相当于网络中的"海关安检",只放行有用的特征信息。
2025-04-25 11:38:51
805
原创 【CVPR2025】GyroDeblurNet:基于陀螺仪的神经单幅图像去模糊
论文题目Gyro-based Neural Single Image Deblurring1简介本文提出了GyroDeblurNet,一种新颖的单图像去模糊方法,该方法利用陀螺仪传感器来解决图像去模糊的不适定性问题。陀螺仪传感器提供关于相机运动的宝贵信息,可以提高去模糊质量。然而,由于来自各种来源的误差,利用真实世界的陀螺仪数据具有挑战性。为了处理这些误差,GyroDeblurNet配备了两个新颖的神经网络模块:陀螺仪精细化模块和陀螺仪去模糊模块。陀螺仪精细化模块利用来自输入图像的模糊信息来精细化有误差的陀
2025-04-23 15:36:28
1079
原创 SPOTLIGHT: Shadow-Guided Object Relighting via Diffusion
传统方法需要复杂的物理渲染引擎,而现有的扩散模型又缺乏精确的光照控制。SPOTLIGHT提出了一种创新的解决方案:通过简单的阴影引导,就能让预训练的扩散模型实现逼真的物体重光照效果。然而,现有的基于扩散的神经渲染引擎虽然能够实现虚拟物体的插入,却缺乏对光照的手动控制能力。目前的重光照方法主要分为两类:基于光照估计的方法和基于生成模型的方法。左侧显示现有扩散渲染器产生的静态合成效果,右侧展示SPOTLIGHT通过阴影引导实现的光照控制效果。,就能让预训练的扩散模型实现精确的物体重光照效果。
2025-04-21 09:31:52
937
原创 ACM MM‘24 | DMFourLLIE:用于低光照图像增强的双阶段多分支傅里叶网络
在傅里叶频域中,亮度信息主要编码在幅度分量中,而空间结构信息则大量包含在相位分量中。现有的利用傅里叶变换的低光照图像增强技术主要集中在放大幅度分量和简单复制相位分量,这种方法常常会导致颜色失真和噪声问题。在本文中,作者提出了一种双阶段多分支傅里叶低光照图像增强(DMFourLLIE)框架,通过强调相位分量在保留图像结构和细节方面的作用来解决这些限制。第一阶段整合红外图像的结构信息来增强相位分量,并在亮度 - 色度颜色空间中采用亮度注意力机制,以精确控制幅度增强。
2025-03-18 14:55:09
752
原创 LapLoss:多尺度图像增强的新利器
在每个层次上,生成图像和真实图像之间的差异被计算为损失,并通过加权平均的方式将这些损失结合起来,形成最终的损失函数。在每个层次上,生成器生成的图像与真实图像之间的差异被计算为损失,并通过加权平均的方式将这些损失结合起来,形成最终的损失函数。该方法通过拉普拉斯金字塔将图像分解为多个层次,每个层次对应不同的分辨率,从而捕捉到图像的高层次特征,同时保留低层次的细节和纹理。具体来说,LapLoss通过在每个金字塔层次上计算损失,平衡了图像的重建精度和感知质量,从而在多种光照条件下都能生成高质量的图像。
2025-03-18 14:49:39
621
原创 手机夜间拍照神器!DiffPGD:个性化低光图像去噪与增强
为了解决这一问题,本文提出了一种基于扩散模型的个性化生成去噪方法(DiffPGD),通过利用用户手机中的个性化照片库,构建定制化的扩散模型,从而在低光环境下实现更好的图像去噪和增强。DiffPGD的关键创新在于引入了身份一致的物理缓冲区,该缓冲区从用户的照片库中提取出人物的物理属性(如表面几何和皮肤颜色),并将其作为强先验信息,指导扩散模型的生成过程。具体来说,DiffPGD通过从用户的照片库中提取身份一致的物理缓冲区,并将其作为先验信息集成到扩散模型中,从而在不需要微调的情况下恢复退化的图像。
2025-03-17 08:53:44
1131
1
原创 AIIE:基于DCT频率先验的全包容低频干扰图像增强
在实际场景中,图像常因各种恶劣天气条件,如雾霾、水下环境、低光照等,出现清晰度下降、细节模糊、对比度降低等问题,导致场景可见性变差。这些低质量图像不仅影响人们的视觉感受,还会对后续的计算机视觉任务,如目标识别、图像分割等造成阻碍。因此,图像增强技术至关重要,它旨在提升图像质量,改善图像的视觉效果,增强细节和对比度,从而提高后续任务的执行效率和准确性。本文提出的全包容图像增强(AIIE)方法,针对多种受天气影响导致低频干扰的图像退化问题,提供了一种统一的解决方案。
2025-03-15 10:33:16
910
2
原创 【AAAI 2025】基于离散余弦变换的全频谱空间注意力,增强网络特征学习,即插即用!
在CIFAR-10数据集上,使用ResNet19和ResNet20模型分别在2和4时间步长下取得了94.72%和96.52%的准确率。然而,SNNs中脉冲生成的固有稀疏性导致中间输出脉冲的深入分析和优化常常被忽视,这限制了SNNs的固有能量效率,并减少了其在时空特征提取方面的优势,导致准确度不足和不必要的能量消耗。1. 实验设置:在多个广泛使用的架构上进行了综合实验,使用了静态数据集CIFAR-10、CIFAR-100和ImageNet,以及动态数据集CIFAR10-DVS。浙江大学计算机科学与技术学院;
2025-03-15 10:31:09
1238
原创 SVDC模型:手机上的深度估计革命
这些注意力图指导AFSF模块在不同区域应用不同大小的卷积核,从而实现对高频细节的保留和对低频区域异常高频噪声的抑制。最后,通过深度头得到初步深度图,并使用特征引导的像素shuffle模块进行精细化处理,得到最终的高精度深度图。然而,现有方法难以有效处理dToF传感器的稀疏深度图,它们通常受到物理成像原理带来的巨大噪声影响,直接应用这些方法并不足以解决dToF数据的特定挑战。图6. 在TartanAir数据集上的定性结果显示,未添加窗口一致性监督时,不同窗口间帧的边界处出现明显的闪烁现象。
2025-03-15 10:21:54
887
原创 事件相机遇上Retinex理论,低光图像增强新突破
ERetinex的成功主要归功于其创新的双模态增强策略,该策略充分利用了事件相机的高动态范围和时间分辨率,以及传统图像的丰富色彩信息。在实验中,事件数据和图像数据的融合显著提升了照明估计的准确性,确保在低光条件下图像细节和色彩的完美再现。此外,采用了一种有效的融合策略,将事件相机的高动态范围数据与传统图像的色彩信息结合,从而生成更清晰、细节更丰富的图像。ERetinex框架通过结合事件相机的高动态范围数据和传统图像的色彩信息,提供了一种创新的方法来增强图像质量,在极端光照条件下保持视觉信息的完整性。
2025-03-14 10:30:42
828
原创 【数字图像处理】频率域图像增强:用傅里叶变换揭开图像细节的秘密
频率域图像增强通过将图像转换到频率域,针对性地调整频率分量,达到改善图像对比度和细节的目的。
2025-03-14 10:26:58
1164
原创 (ACCV 2024)基于小波变换的Mamba与傅里叶调整的低光照图像增强
WalMaFa通过结合小波变换的低频分量和傅里叶变换的相位分量,实现了全局亮度和局部细节的平衡。作者通过实验发现,小波变换的低频LL分量在增强全局亮度方面优于傅里叶变换的幅度分量,而傅里叶变换的相位分量在恢复局部细节方面优于小波变换的高频分量。在LOL-v1、LOL-v2-real和LOL-v2-syn数据集上,WalMaFa在PSNR和SSIM指标上均优于或接近现有最先进的模型。设计了一种编码器-潜在层-解码器结构,结合小波和傅里叶变换的优势,实现了低光照图像的高质量增强。
2025-03-12 15:39:50
1670
原创 (AAAI 2025) 基于生成感知先验的低光照图像增强
尽管在增强低光照(LL)图像的可见性、恢复纹理细节和抑制噪声方面取得了显著进展,但由于现实场景中复杂的光照条件,现有的低光照图像增强(LLIE)方法在实际应用中仍面临挑战。此外,生成视觉上逼真且吸引人的增强效果仍然是一个未被充分探索的领域。针对这些挑战,作者提出了一种新颖的LLIE框架,该框架通过视觉语言模型(VLMs)生成的生成感知先验(GPP-LLIE)进行指导。具体来说,作者首先提出了一种管道,引导VLMs评估LL图像的多个视觉属性,并将评估结果量化为全局和局部感知先验。
2025-03-11 21:21:44
1371
原创 【CVPR 2024】状态空间对偶+多阶段状态融合+高效视觉Mamba模块
本文提出了一种新型的视觉架构Efficient Vision Mamba (EfficientViM),它基于隐藏状态混合器的状态空间对偶性(HSM-SSD),能够以更低的计算成本高效捕捉全局依赖关系。通过重新设计SSD层,将通道混合操作置于隐藏状态中,并引入多阶段隐藏状态融合,进一步增强了隐藏状态的表示能力。实验结果表明,EfficientViM在ImageNet-1k数据集上实现了新的速度-精度权衡,在高分辨率图像和知识蒸馏训练时也表现出显著的性能提升。ImageNet-1K 分类上各类模型的比较。
2025-03-10 09:12:32
1558
原创 PGH2Net:高效去雾新方法,性能超越SOTA!
本文提出了一种基于三重先验的层次化去雾网络PGH2Net,通过引入亮通道、暗通道和直方图均衡化先验,显著提升了去雾效果,并在多个数据集上超越了现有方法。为了验证PGH2Net的有效性,本文在多个数据集上进行了实验,包括室内合成数据集(SOTS-Indoor)、室外合成数据集(SOTS-Outdoor)以及两个真实世界数据集(Dense-Haze和O-HAZE)。可以看到,PGH2Net能够有效去除雾霾,恢复出清晰的图像细节,尤其是在红色框标注的区域,PGH2Net的表现明显优于其他方法。
2025-03-07 10:18:52
774
原创 (EAAI)DFP-Net:一种用于单图像去雾的无监督双分支频域处理框架
无雾图像是许多计算机视觉任务的前提条件,因此单图像去雾在该领域尤为重要。然而,现有的深度学习去雾方法面临以下问题:(1)先前去雾方法在恢复图像可见性方面的巨大潜力被忽视;(2)大多数深度学习去雾方法主要利用空间信息,却忽略了图像不同频域中的信息;(3)由于缺乏成对的有雾和清晰图像,这些方法的去雾能力有限。因此,作者提出了一种新颖的无监督去雾网络DFP-Net,以解决上述三个问题。具体而言,作者将暗通道先验算法嵌入到网络中,结合了先验方法和深度学习方法的优势。
2025-03-06 15:40:54
1628
2
原创 (CVPR 2025)突破低光照图像增强瓶颈!你只需要一个HVI色彩空间
将HV与I-Map按通道连接后,即可得到sRGB格式图像的HVI-Map。(1)极坐标化HS平面,让相邻的红色区域在数学上更连续,彻底消除断裂式噪点(见图1c),确保颜色空间内相似色彩的欧氏距离最小化,提高红色区域内的信噪比。(2)HVI引入了一个可学习的光强压缩函数(Ck),动态压缩低光区域强度,抑制噪声,同时保留高光细节,维持色彩空间级别的更高信噪比(见图1d)。如表4,图5,和图6,消融实验表明,我们所提出的光强压缩函数,HS极坐标化,和CIDNet的子模块均有效,获得了很好的定性与定量实验结果。
2025-03-06 15:29:58
2348
原创 (ECCV2024)Histoformer:基于直方图Transformer的恶劣天气图像恢复新文章
题目:Restoring Images in Adverse Weather Conditions via Histogram Transformer论文地址: https://arxiv.org/pdf/2407.10172代码地址: https://github.com/sunshangquan/Histoformer。
2025-03-04 09:00:00
1839
原创 (CVPR 2024) FourierDiff:零样本扩散模型,突破低光增强与去模糊瓶颈
提出了一种基于,能够地同时完成,在的情况下,在真实世界场景下取得了。传统方法改善亮度但无法处理模糊,导致增强后的图像仍然模糊。传统方法在低光照环境下表现不佳,假设图像拍摄于良好照明条件。(如 LEDNet)依赖于训练,,在真实场景下效果欠佳。如何在下,同时进行和,并取得的高质量图像?
2025-03-03 17:06:46
1446
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人