各种各样的数

在这里插入图片描述

数的类别

数可以被分类为数系的集合内。对于以符号表示数的不同方式,则请看记数系统。

自然数

主条目:自然数
最常用的数为自然数,有些人指正整数,有些人则指非负整数。前者多在数论中被使用,而在集合论和计算机科学中则多使用后者的定义。

在十进制数字系统里,自然数的标记符号为0至9等十个数字,将以十为基数的进位制使用在大于九的数上。 因此,大于九的数会有两个或两以上的位数。表示所有自然数的集合为 N \mathbb {N} N

整数

主条目:整数、正整数、负整数和0
负整数是小于 0 的整数,通常在其前面加上一负号(−),来表示其为正整数的对立。 例如,若一个正整数是用来表示距一定点 0 右边多少的距离,则一个负整数即表示距此定点 0 左边多少的距离。 相似地,若一正整数表示一银行存款,则一负整数即表示一银行提款。 负整数、正整数和零三者即合称为整数 Z \mathbb {Z} Z(德语 Zahl 的缩写)。

有理数

主条目:有理数和无理数
有理数是指可以被表示成整数分子( m \mathit {m} m)和非零整数分母( n \mathit {n} n)的分数的数,即{ m n \tfrac {m}{n} nm},其代表 1 被分做相同的 n \mathit {n} n份,再取 m \mathit {m} m份后的量。两个不同分数可能会对应到相同的有理数,如: − 10 − 20 = 2 4 = 1 2 \tfrac {-10}{-20}=\tfrac {2}{4}=\tfrac {1}{2} 2010=42=21。若 m \mathit {m} m的绝对值大于 n \mathit {n} n的绝对值时,其分数的绝对值会大于 1。分数可以是正的、负的、或零。所有分数所组成的集合包含有整数,因为每一个整数都可以写成分母为 1 的分数。有理数的符号为 Q \mathbb{Q} Q(quotient <中文:商>的缩写)。

实数

主条目:实数和虚数
不严谨地说,实数可以和一连续的直线数线视为同一事物。 所有的有理数都是实数,实数也包含无理数, 所有实数可以分成正数、零和负数。

实数可以被其数学性质独特地描绘出:它是唯一的一个完备全序体。 但它不是个代数闭域。

十进制数是另一种能表示数的方式。 在以十为底的数字系统内,数可以被写成一连串的数字, 且在个位数右边加上句号(小数点)(在美国和英国等地)或逗号(在欧洲大陆),负实数则在再前面加上一个负号。以十进制标记的有理数,其位数会一直重复或中断(虽然其后面可以加上任意数量的零),而0是唯一不能以重复位数定义的实数。例如,分数 5 4 \frac {5}{4} 45能够写做中断位数的十进制数1.25,也能写做重复位数的十进制数1.24999…(无限的9)。 分数 1 3 \frac {1}{3} 31只能够写做 0.3333…(无限的3)。 所有重复与中断的十进制数定义了能被写成分数的有理数。 而不像重复与中断的十进制数一般,非重复且非中断的十进制数代表无理数,不能被写成分数的数。 例如,著名的数学常数, π \pi π(圆周率)和 2 \sqrt {2} 2 都是无理数,表示成十进制数 0.101001000100001…的实数也是无理数,因为其表示不会重复,也不会中断。

实数由所有能被十进制数表示的数所组成,不论其为有理数或无理数。 另外,实数也可以分为代数数和超越数, 其中超越数一定是无理数且有理数一定是代数数,其他则不一定。 实数的符号为 R \mathbb {R} R(Real的缩写)。 实数可以被用来表示量度,而且对应至数线上的点。 当量度只可能精准至某一程度时,使用实数来表示量度总是会有一些误差。 这一问题通常以取定一适当位数的有效数字来处理。

复数

主条目:复数 (数学)
移动到更多层次的抽象化时,实数可以被延伸至复数 C \mathbb {C} C 。 历史上,此数的诞生源自于如何将负1取平方根的问题。

从这一问题,一个新的数被发现了:-1的平方根。 此数被标记为i,由莱昂哈德·欧拉介绍出的符号。 复数包含了所有有 a + b i a+bi a+bi形式的数,其中a和b是实数。 当a为零时,a+bi被称为虚数。 相同地,当b为零时a+bi为实数,因为它没有虚数部分。 一个a和b为整数的复数称为高斯整数。 复数是个代数闭域,即任一复数系数的多项式都能有解。 复数也可以对应至复数平面上的点。

上述就提到的各个数系,每个都是下一个数系的子集。

以符号来表示的话,即为 N \mathbb{N} N ⊂ \subset Z \mathbb {Z} Z ⊂ \subset Q \mathbb {Q} Q ⊂ \subset R \mathbb {R} R ⊂ \subset C \mathbb {C} C

其他类型

Superreal, 超实数和超现实数加上无限小和无限大两种数来延伸实数,但依然是体。

四元数
八元数
十六元数
P进数

表示方式

分数
小数
科学记数法
数字系统
进位制

记数系统

数和以符号来表示数的记数系统不同。 五可以表示成十进制数5和罗马数字V。

记数系统在历史上的重要发展是进位制的发展, 如现今的十进位制,可以用来表示极大的数。

而罗马数字则需要额外的符号来表示较大的数。 记数系统是指用何种方式来记录数的系统,可以是符号形式,也可以是实物形式。 无论符号记数还是实物记数, 如今都抽象成了数码的有序左右排列形式,并且认定左面的数码是右面数码的N倍(N是一个大于1的自然数),这就是N进制记数法,简称为N进制。N=2、3、4、5、8、10、16、…的进制,就分别称为二进制、三进制、四进制、五进制、八进制、十进制、十六进制、…各种进制数之间可以转化。 例如二进制的10111和十进制的23可以相互转化。 人们熟悉十进制,目前电子机器记数使用二进制,将来出现四进制的量子态记数方式也未必可知。 记数系统中使用的占位符号叫数码,N进制的数码所代表的数从0到N-1,分别用0、1、2、… 、@来记,其中@代表的数是N-1,是最大数码。 例如十六进制使用的数码是0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F,十六进制的最大数码@就是“F”。 用数码左右排列的数如果认定某数码间的位置有一个小数点,就可以表示具有小数部分的数。 小数点左移一位,该数就缩小N倍,相反则该数扩大N倍。 人们习惯用“-”放在数码排列的最左面来表示负数,例如十进制的-675.76。 机器表示正负数一般不用“+”、“-”,而使用限位数的方法。限位数就是数码位数固定的数。 例如,3位十进制数共有1000个,只能是000~999,不可能出现其他的表示。 如果认定某位置有小数点,这1000个数就可以表示具有小数部分的数。 限位数可以不用“+”、“-”就可以表示正负数,方法是将所有能表示出来的数按着大小分为对称的两部分, 对称的规则是“表示的两整数之和是数的总数”, 较大的那个对称数就表示较小那个对称数的相反数。 这种规定之下,3位十进制数的501~999就可以认定是负数-499~-1,由于500自身对称,去掉二义性, 规定500就表示是“-500”,这就是对称制(类似2补数表示法)。对称制中偶进制的负数会比正数多一个, 因而表数正负数的区间不对称,但N是奇数时,表数区间是对称的。对称制适合机器数值计算。

https://zh.wikipedia.org/wiki/%E6%95%B0

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值