Doob’s martingale maximal inequalities

1 Doob’s martingale maximal inequalities

1.1

In this post, we prove some fundamental martingale inequalities that, once again, are due to Joe Doob

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
https://fabricebaudoin.wordpress.com/2012/04/10/lecture-11-doobs-martingale-maximal-inequalities/

1.2

In mathematics, Doob’s martingale inequality, also known as Kolmogorov’s submartingale inequality is a result in the study of stochastic processes. It gives a bound on the probability that a submartingale exceeds any given value over a given interval of time. As the name suggests, the result is usually given in the case that the process is a martingale, but the result is also valid for submartingales.

The inequality is due to the American mathematician Joseph L. Doob.

Statement of the inequality

The setting of Doob’s inequality is a submartingale relative to a filtration of the underlying probability space. The probability measure on the sample space of the martingale will be denoted by P. The corresponding expected value of a random variable X, as defined by Lebesgue integration, will be denoted by E[X].
Informally, Doob’s inequality states that the expected value of the process at some final time controls the probability that a sample path will reach above any particular value beforehand. As the proof uses very direct reasoning, it does not require any restrictive assumptions on the underlying filtration or on the process itself, unlike for many other theorems about stochastic processes. In the continuous-time setting, right-continuity (or left-continuity) of the sample paths is required, but only for the sake of knowing that the supremal value of a sample path equals the supremum over an arbitrary countable dense subset of times.

Discrete time

在这里插入图片描述In this proof, the submartingale property is used once, together with the definition of conditional expectation.[1] The proof can also be phrased in the language of stochastic processes so as to become a corollary of the powerful theorem that a stopped submartingale is itself a submartingale.[2] In this setup, the minimal index i appearing in the above proof is interpreted as a stopping time.

Continuous time

在这里插入图片描述

Further inequalities

在这里插入图片描述

Related inequalities

在这里插入图片描述

Application: Brownian motion

在这里插入图片描述
https://en.wikipedia.org/wiki/Doob%27s_martingale_inequality

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值