Doob’s martingale maximal inequalities

1 Doob’s martingale maximal inequalities

1.1

In this post, we prove some fundamental martingale inequalities that, once again, are due to Joe Doob

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
https://fabricebaudoin.wordpress.com/2012/04/10/lecture-11-doobs-martingale-maximal-inequalities/

1.2

In mathematics, Doob’s martingale inequality, also known as Kolmogorov’s submartingale inequality is a result in the study of stochastic processes. It gives a bound on the probability that a submartingale exceeds any given value over a given interval of time. As the name suggests, the result is usually given in the case that the process is a martingale, but the result is also valid for submartingales.

The inequality is due to the American mathematician Joseph L. Doob.

Statement of the inequality

The setting of Doob’s inequality is a submartingale relative to a filtration of the underlying probability space. The probability measure on the sample space of the martingale will be denoted by P. The corresponding expected value of a random variable X, as defined by Lebesgue integration, will be denoted by E[X].
Informally, Doob’s inequality states that the expected value of the process at some final time controls the probability that a sample path will reach above any particular value beforehand. As the proof uses very direct reasoning, it does not require any restrictive assumptions on the underlying filtration or on the process itself, unlike for many other theorems about stochastic processes. In the continuous-time setting, right-continuity (or left-continuity) of the sample paths is required, but only for the sake of knowing that the supremal value of a sample path equals the supremum over an arbitrary countable dense subset of times.

Discrete time

在这里插入图片描述In this proof, the submartingale property is used once, together with the definition of conditional expectation.[1] The proof can also be phrased in the language of stochastic processes so as to become a corollary of the powerful theorem that a stopped submartingale is itself a submartingale.[2] In this setup, the minimal index i appearing in the above proof is interpreted as a stopping time.

Continuous time

在这里插入图片描述

Further inequalities

在这里插入图片描述

Related inequalities

在这里插入图片描述

Application: Brownian motion

在这里插入图片描述
https://en.wikipedia.org/wiki/Doob%27s_martingale_inequality

内容概要:文章详细介绍了HarmonyOS的目录结构及其重要性,从整体框架到核心目录的具体功能进行了全面剖析。HarmonyOS凭借其分布式架构和跨设备协同能力迅速崛起,成为全球操作系统领域的重要力量。文章首先概述了HarmonyOS的背景和发展现状,强调了目录结构对开发的重要性。接着,具体介绍了根目录文件、AppScope、entry和oh_modules等核心目录的功能和作用。例如,AppScope作为全局资源配置中心,存放应用级的配置文件和公共资源;entry目录是应用的核心入口,负责源代码和界面开发。此外,文章还对比了HarmonyOS与Android、iOS目录结构的异同,突出了HarmonyOS的独特优势。最后,通过旅游应用和电商应用的实际案例,展示了HarmonyOS目录结构在资源管理和代码组织方面的应用效果。; 适合人群:具备一定编程基础,尤其是对移动操作系统开发感兴趣的开发者,包括初学者和有一定经验的研发人员。; 使用场景及目标:①帮助开发者快速理解HarmonyOS的目录结构,提高开发效率;②为跨设备应用开发提供理论和技术支持;③通过实际案例学习资源管理和代码组织的最佳实践。; 其他说明:HarmonyOS的目录结构设计简洁明了,模块职责划分明确,有助于开发者更好地管理和组织代码和资源。随着万物互联时代的到来,HarmonyOS有望在开发便利性和生态建设方面取得更大进展,吸引更多开发者加入其生态系统。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值