随机微分方程学习笔记02 Doob鞅不等式

本文介绍了随机微分方程中的Doob鞅不等式,包括条件期望下的Jensen不等式、选择停时定理和Doob鞅不等式的证明及其应用。通过这些理论,探讨了鞅在概率论和数学分析中的重要性质。
摘要由CSDN通过智能技术生成

条件期望下的Jensen不等式(一维)

Jensen不等式 φ : R → R \varphi:\mathbb{R}\to\mathbb{R} φ:RR,凸函数( φ \varphi φ为有限凸)。若 X X X φ ( X ) \varphi(X) φ(X)为随机变量,满足 E [ ∣ X ∣ ] < ∞ \mathbb{E}[|X|]<\infty E[X]< E [ ∣ φ ( X ) ∣ ] < ∞ \mathbb{E}[|\varphi(X)|]<\infty E[φ(X)]<,则 φ ( E [ X ∣ G ] ) ≤ E [ φ ( X ) ∣ G ] \varphi(\mathbb{E}[X|\mathscr{G}])\le\mathbb{E}[\varphi(X)|\mathscr{G}] φ(E[XG])E[φ(X)G]。特别地 φ ( E [ X ] ) ≤ E [ φ ( X ) ] \varphi(\mathbb{E}[X])\le \mathbb{E}[\varphi(X)] φ(E[X])E[φ(X)]

一个应用:设 ( X n , F n ) n ≥ 0 (X_n,\mathscr{F}_n)_{n\ge 0} (Xn,Fn)n0是鞅,则 ∀ p ≥ 0 \forall p\ge 0 p0 ( ∣ X n ∣ p , F n ) n ≥ 0 (|X_n|^p,\mathscr{F}_n)_{n\ge 0} (Xnp,Fn)n0是下鞅。
“证”: ∣ E [ X n ∣ F s ] ∣ p ≤ E [ ∣ X n ∣ p ∣ F s ] ∣ X s ∣ p ≤ E [ ∣ X n ∣ p ∣ F s ] \begin{aligned} &\left|\mathbb{E}[X_n|\mathscr{F}_s]\right|^p\le\mathbb{E}[\left|X_n\right|^p|\mathscr{F}_s]\\ &|X_s|^p\le\mathbb{E}[\left|X_n\right|^p|\mathscr{F}_s] \end{aligned} E[XnFs]pE[XnpFs]XspE[XnpFs] □ . \Box. .

选择停时定理(optional stopping theorem)

离散格式:设 X = ( X t ) t ∈ N 0 X=(X_t)_{t\in\mathbb{N}_0} X=(Xt)tN0是一个离散时间鞅 / 上鞅 / 下鞅, τ ∈ N 0 ∪ { ∞ } \tau\in\mathbb{N}_0\cup\{\infty\} τN0{ }是一个停时。若以下三个条件满足一个:

  1. ∃ c ∈ N , s . t . , τ ≤ c a . s . \exist c\in\mathbb{N},s.t. ,\tau\le c\quad a.s. cN,s.t.,τca.s.
  2. E [ τ ] < ∞ \mathbb{E}\left[\tau\right]<\infty E[τ]< ∃ c , s . t . ∀ t ∈ N 0 , E [ ∣ X t + 1 − X t ∣ ∣ F t ] ≤ c \exist c,s.t.\forall t\in\mathbb{N}_0,\mathbb{E}\left[|X_{t+1}-X_t|\mid\mathscr{F}_t\right]\le c c,s.t.tN0,E[Xt+1XtFt]c { τ > t } \{\tau> t\} { τ>t}上几乎处处成立;
  3. ∃ c , s . t . ∀ t ∈ N 0 , ∣ X τ ∧ t ∣ ≤ c , a . s . \exist c,s.t.\forall t\in \mathbb{N}_0,|X_{\tau \wedge t}|\le c,a.s. c,s.t.tN0,Xτtc,a.s..

X τ X_{\tau} Xτ是一个几乎处处良定义的随机变量,且 E [ X τ ] = E [ X 0 ] \mathbb{E}[X_\tau]=\mathbb{E}[X_0]\quad E[Xτ]=E[X0] / E [ X τ ] ≥ E [ X 0 ] \quad\mathbb{E}[X_\tau]\ge\mathbb{E}[X_0]\quad E[Xτ]E[X0] / E [ X τ ] ≤ E [ X 0 ] \quad\mathbb{E}[X_\tau]\le\mathbb{E}[X_0] E[Xτ]E[X0]

【当一个鞅或者上鞅或者下鞅的停时满足一定条件的时候,停时时刻的随机变量的期望能被初始时刻随机变量的期望给控制住。】

Doob鞅不等式(Doob’s martingale inequality)

定理:设 ( X n , F n ) 0 ≥ n ≥ N (X_n,\mathscr{F}_n)_{0\ge n\ge N} (Xn,Fn)0nN是鞅,则对任意 p ≥ 1 p\ge 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值