深度学习中的超参数优化

      构建深度学习模型时,你必须做出许多看似随意的决定:应该堆叠多少层?每层包含多少个单元或过滤器?激活函数应该使用relu还是其他函数?在某一层之后是否应该使用BatchNormalization?应该使用多大的dropout比率?还有很多,这些在架构层面的参数叫做超参数(hyperparameter),以便将其与模型参数区分开来,后者通过反向传播进行训练。

      在实践中,经验丰富的实战者凭着直觉能够判断上述选择哪些可行、哪些不可行。但是调节超参数并没有正式成文的规则。如果想要在某项任务上达到最佳性能,就不能满足于一个容易犯错的人随意做出的选择。即使你拥有很好的直觉,最初的选择也几乎不可能是最优的。

      因此,我们需要制定一个原则,系统性的自动探索可能的决策空间。超参数优化过程通常如下所示。

1)选择一组超参数(自动选择)。

2)构建相应的模型。

3)将模型在训练数据上拟合,并衡量其在验证数据上的最终性能。

4)选择要尝试的下一组超参数(自动选择)。

5)重复上述过程。

6)最后,衡量模型在测试数据上的性能。

        这个过程的关键在于,给定许多组超参数,使用验证性能的历史来选择下一组需要评估的超参数算法。有多种不同的技术可供选择:贝叶斯优化、遗传算法、简单随机搜索等。

       训练模型权重相对简单:在小批量数据上计算损失函数,然后用反向传播算法让权重向正确的方向移动。与此相反,更新超参数则非常具有挑战性。

1)计算反馈信号(这组超参数在这个任务上是否得到了一个高性能的模型)的计算代价可能非常高,他需要在数据集上创建一个新模型并从头开始训练。

2)超参数空间通常由许多离散的决定组成,因而既不是连续的,也不是可微的。因此,你通常不能在超参数空间中做梯度下降。相反,你必须依赖不使用梯度的优化方法,而这些方法的效率比梯度下降要低很多。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值